
ИЗМЕНЕНИЕ УГЛА φ1 В АСИНХРОННОЙ МАШИНЕ (АМ) Марков В.С.

Национальный технический университет «Харьковский политехнический институт», г. Харьков

В схеме(рис.1) запитываем от внешнего источника переменного напряжения обмотку статора АМ, ротор которой при этом вращаем за счёт двигателя постоянного тока, а угол измеряем фазометром. Исследования проводились асинхронной на машине 4AX80ДУ3 с параметрами $P_{\text{ном}} = 0.92$ кВт, U_1 $=380 \text{ B}, I_1 = 2.2 \text{ A}, f = 50 \text{ Гц}, n_1 = 1000 \text{ об/мин},$ $n_2 = 920$ об/мин. При частотах вращения до синхронной (1000 об/мин) угол ϕ_1 , т.е. угол между фазным напряжением на статоре и током статора, составляет от 43° до $72^{\circ} - 74^{\circ}$. При неизменном линейном напряжении U_{C1-C2} , или, что, то же самое, при неизменном напряжении источника питания, изменение вращения ротора n_2 вызывает

неоднозначное изменение тока статора I_{1-2} . При изменениях n_2 от 900 об/мин до 1000 об/мин, ток статора уменьшается от 0,42 A до 0,26 A. В диапазонах частот вращения от 991 об/мин до 1008 об/мин ток статора минимальный 0, 26 A (рис. 2, a). Дальнейшее увеличение частоты вращения ротора до 1050 об/мин вызывает рост тока до 0,4 A. Вообще увеличение частоты вращения свыше 1000 об/мин вызывает почти монотонный рост тока, а при 1030 — 1200 об/мин угол ϕ_1 становится больше 90° (рис. 2, δ). Дальнейший рост частоты n_2 приводит к уменьшению угла ϕ_1

 n_2 , об/мин n_2 , об/мин 1400 1400 1200 1200 1000 1000 800 800 600 600 400 400 200 200 0,1 0,2 0,3 0,4 0,5 0,6 0,7 20 50 60 б a

Рис.2 Зависимость частоты вращения ротора от тока статора при U_{C1-C2} = const (a); зависимость угла φ_1 от частоты вращения ротора (δ)