УТОЧНЕНИЕ ХАРАКТЕРИСТИКИ НАМАГНИЧИВАНИЯ АСИНХРОННОЙ МАШИНЫ (АМ) С КОРОТКОЗАМКНУТЫМ РОТОРОМ Марков В.С.

Национальный технический университет «Харьковский политехнический институт», г. Харьков

Известно, что АМ может работать как автономный генератор $(A\Gamma)$ подключении конденсатора (-ов) в цепь AΓ, обмотки статора, например, включением конденсатора схеме, представленной на рис. 1 Зависимость между ЭДС (напряжением) на статоре и током статора (тока намагничивания) синхронной называются частоте характеристикой холостого хода. Наиболее широко распространенное представление о самовозбуждении АГ состоит в том, что остаточная намагниченность ротора создает напряжение ток в статоре, который усиливается за счет опережающего тока через подключенный к обмоткам статора конденсатор. Пересечение вольт-амперной характеристики конденсатора И кривой

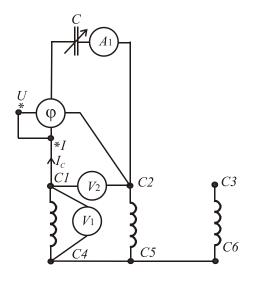


Рис.1. Схема возбуждения авто-

намагничивания даёт значения установившихся напряжения и тока статора возбуждения АΓ. Поэтому следует снимать характеристику намагничивания для тех фаз обмотки статора, по которым протекает ток ротора. Автором были сняты характеристики холостого хода машины 4АХ80ДУЗ с параметрами $P_{\text{ном}}$ =0,92 кВт, U_1 =380 В, I_1 = 2,2 А, f = 50 Гц, $n_1 = 1000$ об /мин, $n_2 = 920$ об/мин. Измерения проводились при неподвижном роторе (s=1) и при различных частотах вращения ротора $n_2=1000$ об/мин $(s=0), n_2=1100$ об /мин (s=-0.1) $n_2=1380$ об /мин (s=-0.38). Полученные характеристики представлены в таблице 1, где U_{C1-C2} – измеряемое напряжение в фазе статоре, $I_{\rm C}$ – регулируемый ток статора. Ранее автором представлялись данные по характеристике намагничивания при однофазном возбуждении. Теперь же производится уточнение для двухфазного возбуждения.

Таблица1

I_C , A	$U_{\text{C1-C2}}$, В при различных скольжениях s			
	s = -0.38	s = -0.1	s = 0	s = 1
0,3	15,6	20,6	49,5	16,8
0,5	24,78	35,7	88,5	28
0,7	33,5	49	127,4	38,9
1,0	47,7	68,9	188,5	55,8
2,0	-	-	-	109,6