NEGATIVE SOLVATION OF IONS IN SOLVENTS WITH A SPATIAL NETWORK OF H-BONDS Bulavin V.I¹, V'yunyk I.M.², Kramarenko A.V¹., RusinovA.I.¹, Volobuyev M.N.¹ ¹National Technical University "Kharkiv Polytechnical Institute", ²V.N. Karazin National University of Kharkiv, Kharkiv

This report is devoted to the investigation of near solvation of singly charged ions with different in nature and composition. As a shown in [1], there are the correlation exists between deviation of translational (diffusion) displacement length (\bar{d}) from the Stokes law $(\bar{d} - r_i)$ (r_i structural radius of ion) and solvability of these ions according to Samoilov [2]. Parameter $(\bar{d} - r_i)$ has been offered as a quantitative measure of ions influence on translational exchange of water molecules of the nearest to ion environment on molecules in bulk water by authors [1]. The inequalities $(\bar{d} - r_i) < 0$ or $\bar{d}/r_i < 1$ has been recommended as a criterion for negative ion solvation, and $(\bar{d} - r_i) > 0$ or $\bar{d}/r_i > 1$ for positive one [1]. By Samoilov [2], the essence of negative solvation is that the bonds I-M are weaker than the bonds between the molecules (M-M), and for positive solvation – on the contrary.

In the present work values \overline{d} for 12 singly charged ions in monoethanolamine (MEA), ethylene glycol (EG) and methanol (MeOH) at 298,15 K based on the literature data on the mobility of these ions have been calculated. We used the author's technique [1] for these calculations.

The sign of the parameter $(\overline{d} - \mathbf{r}_i)$ for these ions in MEA, EG and in water are given in the table. The sign "+" corresponds to positive solvation, the sign "-" - corresponds to negative one.

Solvent	Li ⁺	Na ⁺	\mathbf{K}^+	Rb^+	Cs ⁺	Me_4N^+	Et_4N^+	Bu_4N^+	Cl [–]	Br-	I-	BPh_4^-
H ₂ O [1]	+	+	—	_	_	_	_	+	—	_	_	+
MEA	+	+	+	_	_	_	_	+	+	+	_	+
EG	+	+	_	_	_	_	_	_	_	_	_	
MeOH	+	+	+	+	+	_		_	+	+	+	_

It shown from the table that the ions Me_4N^+ and Et_4N^+ are solvated negatively and the cations Li^+ and Na^+ are solvated positively in all these solvents. For others ions sign of parameter $(\overline{d} - \mathbf{r}_i)$ shows a positive or negative solvation. Therefore the difference $(\overline{d} - \mathbf{r}_i)$ depended on nature and size of ion and structure of solvent.

As have been established in [1], parameter $(\overline{d} - r_i)$ describes a real behavior of an ion in the solution and identically characterizes the short-range solvation in the cases of both positively and negatively solvated ions.

References:

[1] Bulavin V.I., V'yunyk I.M., Lazareva Ya.I. Diffusion and microscopic characteristics of singly charged ion transfer in extremely diluted aqueous solutions // Ukr. J. Phys. -2017. Vol. 62, $N \ge 9$. -P. 769-778.

[2] O.Ya. Samoilov Struktura vodnyh rastvorov jelektrolitov i gidratacija ionov. – USSR Acad. of Sciences Publ.– Moscow, 1957. – 179 p.