

computing@computingonline.net www.computingonline.net

Print ISSN 1727-6209 On-line ISSN 2312-5381 International Journal of Computing

THE METHODS OF SELECTION OF THE PROJECT MANAGEMENT METHODOLOGY

Igor Kononenko, Anna Kharazii

Strategic Management Department, National Technical University "Kharkiv Politechnic Institute", 21, Frunze str., Kharkiv, 61002, Ukraine, igorvkononenko@gmail.com

Abstract: The problem of selecting the methodology to manage the company's projects or a specific project is reviewed. The authors suggest the methods to select methodology that are designated for application under different conditions of awareness of a decision-maker about the existing methodologies, their advantages and weaknesses and about the range of efficient use.

As the methods are more precise, they require a more laborious analysis of the project and its environment. It is proposed to make the most substantiated choice resulting from solution of the task on optimizing the project's scope to the following criteria: profit, time, cost, quality, risk, and a company's maturity growth. *Copyright © Research Institute* for Intelligent Computer Systems, 2014. All rights reserved.

Keywords: project management, selection, methodology, optimization, profit, cost, time, quality, risk, maturity.

1. INTRODUCTION

Before starting managing any project, the problem of choosing adequate methodology arises. Nowadays, there are plenty of project management methodologies, such as ISO 21500 standard, PMBoK, PRINCE2, P2M, RUP, Agile methodologies and many others.

The selection of the adequate project management methodology is a challenging issue as for project manager concerning an individual project, as well as for the whole company concerning managing all its projects. The selected project management methodology has a great impact on the personnel development programs, purchase of software necessary for managing the business, the set of business process, and even on the organizational structure of the company together with the department regulations and job descriptions.

In practice, project manager or company management do not always have a clear understanding of all existing variants of standards and project management methodologies, considering only limited number of options. In this case the specifics of the company or the project are not taken into account. The resolution of this issue requires rather deep knowledge of a particular methodology or standard and the approaches to their selection.

The methods which would constitute a totality of approaches and operations applicable at various

levels of managers training, with different degrees of awareness about the project and its environment are necessary for practical application.

Aim of the paper is creation of methods to select the methodology to manage the project, with different degrees of awareness of the project manager about the methodologies and with different potentials of the project and its environment analysis.

2. ANALYSIS OF RECENT RESEARCHES AND REFERENCES

A. Cockburn [1] describes important factors that must be taken into account when selecting the project management methodology.

B. Boehm, R. Turner [2, 3] suggested a method of balancing between the rigid planned methodologies and Agile methodologies while managing a specific project in the expected environment. The method's essence lies in the following stages.

Stage 1. They evaluate the risks connected with project's implementation through use of the planned and Agile methodologies according to specific environment conditions.

Stage 2. If the risks related to application of Agile methodology prevail over the ones inherent to the planned methodology, the latter should be applied.

Stage 3. If the risks related to application of the planned methodology prevail over the risks inherent to Agile methodology, they should apply Agile methodology.

Stage 4. If some components of the project meet the stage 2, and others meet the stage 3, the most adequate methodologies will be applied to the outlined components.

Stage 5. They map out the project's implementation.

Stage 6. They monitor the project's progress, evaluate the risks and potentials, re-adjust the balance, if necessary.

J. Sheffield, J. Lemétayer [4], by virtue of the reference analysis, point out the factors that have impact upon the choice of methodology to manage the software development project, which is focused on a rigid planned approach (Prince 2, PMBoK) or on the adaptive Agile approach. As well a survey of 127 specialists in the area of project management out of 22 countries has been made in the paper. The total number of respondents has included 26% of specialists on application of Prince 2, 28% – on use of PMBoK and 30% – on Agile. The least project as pointed out by the respondents has been evaluated of USD 2500 and has had the labour intensity of 2 man-months, the largest project's cost has been of USD 840 mln and has had the labour intensity of 1260 man-years. The survey of specialists has been aimed at specifying the factors in the project and its environment testifying to a necessity of application of Agile approach in successful projects intended to creating software products. Following from the survey, the list of prioritized factors has been formed. Low values of such factors denote the planned approach to manage the project, high values highlight Agile approach. The factor analysis has been conducted for four groups of variables characterizing the project's environment, the project, Agility at development of software products and the project's success. Hence 8 most important factors have been outlined.

S. Lazaros, D.C. Prodromos [5] dealt with a survey on performance of 112 projects in the area of software production by 63 companies from Greece. Findings of the survey have been analysed by means structural equations. The analysis has been aimed at examining the effect of the staff quality, quality of processes on the risks of software products projects. The paper reviews 6 risk factors in such projects, in particular: the user, requirements, complexity of the project, planning and control, project team and company's environment. The project's general quality has been measured by means of two factors: quality of processes and staff quality. The analysis has shown that there is a negative statistically

significant relation between the quality of the project and the risks. There is a similarly negative relation between the staff quality and five of six risk parameters (except the project's complexity one). As well, a significant negative relation is traced between the quality of processes and the project's team risk factor.

O. McHugh, H. Mairéad in [6] studied the issue of transition organization engaged in creation of software systems to the internationally recognized project management methodology. As exemplified by five Irish companies, the reasons of transition from the corporate methodologies to manage the projects to the internationally accepted ones, and reasons of implementing also the methodologies in case the company has got no project management methodology at all are reviewed. In one company (with the least number of employees) thev have been selecting methodology based on advice of their colleagues and they have chosen PMBoK. In the second case, selection has also been made according to the advice of colleagues, however with that they have considered the option of tailoring the methodology to meet the company's needs. They have preferred PRINCE 2. The third company has selected the methodology subject to CMMI recommendations in order to pass through certification on that system thereafter. Besides, when selecting the methodology they have relied on the opinion of their US parent structure, which appreciates an option of getting the PMI certificate. It is no wonder that finally they have accepted the PMBoK methodology for application. The fourth company involving about 2500 employees has formed a freestanding team for selecting the methodology. When making the decision. they have taken into account opportunity of adapting the methodology to meet the company's needs. Eventually they have taken the road to adjust PMBoK. Finally, in the fifth case, the major focus (while selecting a methodology) has been given to availability of plenty of bodies that certify specialists, hold trainings and provide support at implementation of a specific methodology. In addition, allowance has been made to the particular methodology as used in the parent company and to the possibility of adopting the methodology. As a result, the choice was made in favour of the PRINCE 2.

J. Xu, H. Zheng, Z. Zeng, S. Wu, M. Shen [7] dealt with the discrete task of searching for a compromise between time, cost of the project, crashing cost and impact on environment. Time of operations is set as a vague value with a triangle membership function. The adaptive hybrid genetic algorithm is offered for solution of the task.

3. SELECTION OF THE PROJECT MANAGEMENT METHODOLOGY BASING ON EXISTING RECOMMENDATIONS

The method of selecting the project management methodology is suggested. The method is designed for the situations when the project manager and project team do not have a full knowledge of alternative project management methodologies and standards. As a rule, the project manager is familiar enough with one or two methodologies. The knowledge of all the others is rather superficial. In case the team does not have enough time and/or resources for studying alternative methodologies during managing a specific project, it is reasonable to use the existing recommendations about their application under specific practical circumstances. The suggested method serves exactly accomplishing this purpose.

The given method is a questionnaire for a project manager. This questionnaire was presented in the paper [8]. In the paper the questionnaire was further developed. It consists of two parts. In the first part the short resume of the project is given (table 1). The second part is a set of fixed-choice questions (tables 2-6). They cover a scope of forming of a project team, the level of its expertise, the choice of the means of communication and the ways of reporting, as well as the level of project manager's responsibility, the list of any possible risks and consequences in case of of unsatisfactory project outcome.

The answers to the questions correspond to the scores on the scale from 1 to 4 depending on the level of detail of the project management processes, including the required frequency and thoroughness of the inspection of the project implementation processes. The lower is the score for the questionnaire or the theme blocks, the more control elements the corresponding methodology should include. The total score corresponds to the recommended methodologies, which are the most suitable for managing the project.

Table 1. Brief Project Description.

Questions	Answers
Project name	
Project	Main strategic project aim.
scope	Brief description of innovation/project
	R&D, creation of new product
Project type	(technology, service), creation of new
	manufacture
	Brief description of the product, service,
Project	technology, innovation created in the
product	project

Table 2. Project Team.

Questions	Possible answer	Score	Recommended methodology
Customer's (investor's)	Has never worked with this team	1	PMBoK
experience of working with this	Worked with some members of the team	2	PMBoK
project team	Worked with the project team leader	3	SCRUM, PMBoK
	One or more common projects with the whole project team	4	SCRUM

Table 3. Evaluation of the Project Team's Expertise by the Project Manager.

Questions	Possible answer	Score	Recommended methodology
Work experi-	No work experience.	1	PMBoK
ence in the given field	Experience of working in the field for less than 2 years	2	SCRUM*, PMBoK
	Experience of working in the field from 2 to 5 years	3	SCRUM
	Experience of working in the field for more than 5 years	4	SCRUM
Under- standing of require- ments, adapting	Almost do not understand the requirements; require frequent explanations and constant control	1	РМВоК
ability, initiative	Understand the requirements, can follow them, but require regular control	2	РМВоК
	Understand the requirements, can follow them, do not require regular control	3	SCRUM
	Have good understanding of the requirements; can follow them without regular control; can suggest better alternatives	4	SCRUM
Experi- ence of	Have never worked together	1	PMBoK
coopera-	Worked together	2	SCRUM*,

Questions	Possible answer	Score	Recommended methodology
tion	on the creation of a product, but in the different field		PMBoK
	Worked together on the creation of a product, but in the different field	2	SCRUM*, PMBoK
	Worked together on the creation of one product in a field of interest.	3	SCRUM
	Worked together on the creation of several projects in the field of interest	4	SCRUM
Knowl- edge of applied tools and methods	Tools and methods, applied in the given project, have never been used before and are unknown to the team	1	РМВоК
	Tools and methods, applied in the project, are known to the team but have never been used before	2	SCRUM*, PMBoK
	Tools and methods, used in the project, are known to the team, but are rarely used	3	SCRUM
	Tools and methods are known to the team and have been widely used before	4	SCRUM
Learning ability	It is hard for the team to learn new knowledge and technologies, and to adjust to changes	1	РМВоК
	For some members of the team it is hard to learn new information and technologies, but the team can adjust to changes	2	РМВоК
	Easily absorb new knowledge, can adjust to changes	3	SCRUM
	The team can easily absorb information, always tries to learn something	4	SCRUM

Questions	Possible answer	Score	Recommended methodology
	new; can well		
	adjust to the		
	changes		
Team's	Can't clearly		
ability to	formulate ideas	1	PMBoK
clearly	and rarely express	1	1 WIDOK
formulate	them		
and	Can clearly		
openly	formulate their	2	PMBoK
express	ideas but rarely		FIVIDOK
ideas	express them		
	Can clearly		
	formulate their	2	CCDIM
	ideas and openly	3	SCRUM
	express them		
	Can clearly		
	formulate, openly	,	CCDIDA
	express and justify	4	SCRUM
	their ideas		
Ability to	Don't admit		
admit	making mistakes	1	PMBoK
mistakes	and can't learn	1	PIMBOK
	from them		
	Rarely admit their		
	mistakes but try to	2	PMBoK
	never make them	2	PIVIDOK
	again		
	Openly admit		
	making mistakes	2	CCDIDA
	and try to never	3	SCRUM
	make them again		
	Openly admit		
	making mistakes		
	and always learn	4	SCRUM
	from them		

Table 4. Reporting.

Questions	Possible answer	Score	Recommended methodology
Means of communi-	Written reports. Formal record-keeping	1	PMBoK
cation	Voice communication (telephone connection, Internet-conference)	2	SCRUM*
	On-line communication (ICQ, E-mail)	3	SCRUM
	Direct communication (meetings, video conferences)	4	SCRUM
1 2	Reports on every operation	1	PMBoK
reporting to the	Reports on completing the blocks of work	2	SCRUM, PMBoK
Customer	Reports on the readiness of a component of project's product	3	SCRUM
	Reports about project	4	SCRUM

Questions	Possible answer	Score	Recommended methodology
	finish		
Under- standing the scope of works	There is a full list of works; further alternation is impossible	1	PMBoK
	There is a detailed list of works, further alternation is possible	2	PMBoK
	There is an approximate list of project works	3	SCRUM
	The team understands the project goal and several ways for its achievement	4	SCRUM

Table 5. Project Manager's Responsibility and Main Requirements to the Project.

Questions	Possible answer	Score	Recommended
Questions	r ossible allswei	Score	methodology
Conse-	Loss of life	1	PMBoK
quences in	Loss of irreplaceable	2	SCRUM*,
case of	sum of money	2	PMBoK
unsatis-	Loss of insignificant	3	SCRUM
factory	sum of money	3	SCROM
project	Loss of comfort in	4	SCRUM
outcome	work	4	SCROW
	More than 1 mln. \$	1	PMBoK
rioject cost	From 300 thousand – 1	2	SCRUM*
		2	
	mln. \$	2	PMBoK
	From 100 –300	3	SCRUM
	thousand \$		PMBoK*
	Less than 100	4	SCRUM
	thousand \$		
Require-	Highest international	1	PMBoK
ments to	requirements		
the project	International	2	SCRUM*,
quality	requirements		PMBoK
	National requirements	3	SCRUM*
	Local requirements	4	SCRUM
Require-	The period is	1	PMBoK
ments to	unlimited		
the	Not very urgent	2	
realiza-tion			SCRUM*,
period of			PMBoK
the project			
	Urgent	3	SCRUM
	Very urgent	4	SCRUM
Requireme	The deadline should	1	PMBoK
nts to the	be strictly met	1	PIVIBOK
precise	Insignificant deviation		
compli-	from the deadline is	2	PMBoK
ance with a	allowed		
deadline	Considerable deviation		
	from the deadline is	3	SCRUM
	allowed	-	
	Compliance with the		
	deadline is not strictly	4	SCRUM
	required	•	30110111
L	required		

Table 6. Risks Probability.

Questions	Possible answer	Score	Recommended
			methodology
Probability of	Risk will most	1	PMBoK
occurrence of	probably occur		
technical,	(95%)		
manufacturing	Risk is highly	2	PMBoK
or qualitative	likely to occur		
risks	(75%)		
	Probability of risk	3	SCRUM*
	occurrence is		
	equal (50%)		
	Risk is not likely	4	SCRUM
	to occur (10%)	•	50110111
Probability of	Risk will most	1	PMBoK
occurrence of	probably occur	1	TWIDOIL
external risks	(95%)		
(disruption of	Risk is highly	2	PMBoK
work by con-	likely to occur	_	TWIDOK
tractors, unfa-	(75%)		
vorable political		3	SCRUM
economic	occurrence is	3	SCRUM
situation in the			
country, market	equal (50%)	4	SCRUM
changes, etc.)	Risk is not likely	4	SCRUM
Probability of	to occur (10%) Risk will most	1	PMBoK
		1	PIVIDOK
occurrence of	probably occur		
organizational	(95%)	2	DMD - IZ
risks (disruption	Risk is highly	2	PMBoK
of funding,	likely to occur		
delivery of	(75%)	2	CCDIA
resources,	Probability of risk	3	SCRUM
inaccurate	occurrence is		
prioritizing, etc.)	equal (50%)		CODID
	Risk is not likely	4	SCRUM
5 1 1 111 0	to occur (10%)		20.00.00
Probability of	Risk will most	1	PMBoK
occurrence of	probably occur		
managerial risks			
(inefficient	Risk is highly	2	PMBoK
planning,	likely to occur		
controlling,	(75%)		
communication	Probability of risk	3	SCRUM
problems, etc.)	occurrence is		
	equal (50%)		
	Risk is not likely	4	SCRUM
	to occur (10%)		

The cases, when application of the methodology is not stipulated by the situation but is still possible, are marked with the sign "*".

In the tables 1-6 the recommendations about application of two alternative methodologies – PMBoK and SCRUM – are given.

At this stage two existing methodologies, which are completely different in their approach to project management, have been analyzed. The choice of methodologies was stipulated by the intent to provide the most graphic example of application of two alternative approaches to managing a single project. On the one hand, it is the PMBoK Standard, which contains 47 project management processes; and on the other hand – it is SCRUM, a framework methodology, which has been widely used for managing IT projects in Ukraine. The version of the questionnaire set out in this paper, is used to select a project management methodology namely in the field of IT.

Based on the obtained recommendations, the project manager can choose the most reasonable methodology regarding the given project. The selection process can be rather difficult, especially when the scores for separate blocks of the questionnaire suggest different methodologies. In such case project manager should make a choice based on the majority of recommendations and his own preferences. If the methodology is being selected by the company management for several perspective projects, among these project the most standard ones should be considered. Then the questionnaire, which is the first method, should be completed for all standard perspective projects and make a choice based on recommendations.

4. SELECTION OF PROJECT MANAGEMENT METHODOLOGY FROM PERSPECTIVE OF MAN-HOURS, MANAGEMENT COST AND RELATED RISKS

The second method is designed for the situations when the project team has sufficient knowledge of the alternative project management methodologies, and when it also has time and resources for evaluating the expenses and man hours regarding usage of each methodology as well the risks it may provoke. [8]

The given method suggests the solution for the three-criteria optimization problem of selecting a methodology with regard to the constraints. The optimization criteria are: the work content of managing a project with the methodology under study; the cost of management, the risks related to managing the project with the methodology under study.

The algorithm of work content and cost evaluation of a methodology consists of several stages.

- 1. Analysis of project management methodology how the project is handled, which processes need to be completed, to what extent the project team members are involved into managing the project.
- 2. Creation of a list of project manager's activities in terms of the given methodology. At this stage all processes, which may require involvement

- of the project manager both at the preparation stage, and during execution, have to be taken into account.
- 3. Calculation of project manager's man-hours, required for managing the project.
- 4. Identification of the processes, which may require involvement of other project team members and to what extent it may happen. For example, reporting or development activities almost always require participation of not only the project manager, but the whole project team.
- 5. Calculation of each team member's manhours, required for managing the project.
- 6. Define general man-hours of project management.
- 7. Calculation of project management cost with the help of the following formula:

$$C_M = M \cdot P + \sum_{i=1}^m H_i \cdot W_i + \sum_{j=1}^n C_{j} \cdot K_j$$
, (1)

where M – project manager's hourly wage rate; P – project manager's man-hours; H_i – hourly wage rate of an i-th project manager's assistant. An assistant can be represented by a business-consultant or any other professional, involved to managing the project; W_i – man-hours of an i-th assistant; C_j – hourly wage rate of a j-th team member; K_j – man-hours of a j-th team member; M_i – quantity of project manager assistants; M_i – quantity of project team members.

8. To estimate the risks connected with the project management through use of the methodology under assessment.

Further, one should prioritize the methodologies in question subject to three criteria and choose the best one.

Restrictions on the cost of management process and on labour input thereof can be taken into account in the course of optimization.

5. OPTIMIZATION OF THE PROJECT SCOPE

When solving the task of selecting the project scope, the choice of methodology to be used for management of such project is a vital fact. The applicable methodology of project management tells on time of its implementation, cost, quality of products, stages and the entire project as a whole, on the risks associated with it. Solving the objective of optimizing the project scope for alternative methodologies, one can choose it more substantially than it does with a methodology in isolation from

optimization of the project scope. In this paper the choice of a methodology is proposed to do by solving the optimization problem for the project scope by criteria profit, time, cost, quality, risk.

In cases when it is acceptable in terms of studies complexity, such optimization can be performed for all the methodologies and optimization by the criteria: the work content of managing a project, the cost, the risks of the project as described above, can be avoided.

In order to reduce the labour intensity of the research, it is expedient to make a pre-selection of a small number of methodologies, for example two alternatives, by means of the previous method. As soon as the list of methodologies is narrowed, one can optimize the project scope provided that each of the left methodologies is applied.

For solving the objective of optimizing the project scope according to the criteria: profit, time, cost, quality, risks it is possible to use the method of implicit enumeration in combination with the generalized criterion or the method of successive concessions as described in the paper [9].

The project scope optimization under the successive concessions method is advantageous if compared with the application of the generalized criterion. It is not necessary to set weighting factors for each of the criteria, it is always difficult. It suffices only to prioritize the criteria from the point of view of the task to be solved and to specify the admissible concessions.

6. OPTIMIZING THE SELECTION OF PROJECT MANAGEMENT METHODOLOGY AND PROJECT SCOPE, TAKING INTO ACCOUNT CHANGES IN THE MATURITY OF THE COMPANY

The selected methodology of project management tells on the company's maturity degree. Thus, while estimating the company's maturity by means of CMMI model [10], they make it clear if company applies the standard management processes, as well as the standard processes in production activities, whether the archives for the performed projects and actions of the company are kept, which methods of feedback are used, whether there is a continuous improvement of processes. The project scope as well as the applicable methodology to manage it, with the chosen depth and integrity of application, affects the change of the company's maturity degree.

For the projects that are managed through use of the selected alternative methodologies and the scope of which is optimized according to the criteria: profit, time, cost, quality, risks, the estimation is made towards the company's maturity change to be gained in response. At this time there is a chance to make a final selection of methodology out of alternatives based on comparison of values of six criteria: profit, time, cost, quality, risks and maturity of the company.

The choice shall be made by the company's representatives in terms of the strategic goals of its development.

7. CONCLUSIONS

The paper introduces methods to select the project management methodology that are designated for application under the conditions of different degrees of awareness of the decision-maker. The first method presupposes that the project manager fills in the questionnaire. Depending on his replies, this or that methodology is recommended for use. The second method is dedicated to assessment of labour intensity of the project management by means of the methodologies in question, cost of management and risks. Further, one resolves the triple-criteria task of optimization for selecting the best methodology.

The most precise choice of methodology is based on optimizing the project scope provided that a specific methodology is applied. For this purpose, subject to application of one of the simple methods, by means of which the list of suggested methodologies is narrowed to a small number, it is supposed to optimize the project scope subject to five criteria: profit, cost, time, quality, risks. Thereafter, one makes an estimation of change of the company's maturity while implementing the project on the chosen methodologies by means of CMMI model or any other maturity model in line with the relevant specificity of the company's activity. Selection of the best alternative to implement the project when using this or that methodology so far subject to six criteria: profit, cost, time, quality, risks and maturity, takes place at the next stage.

8. REFERENCES

- [1] A. Cockburn, *Methodology per Project*, Humans and Technology Technical Report HaT TR, 4 December 1999.
- [2] B. Boehm, R. Turner, Using risk to balance agile and plan-driven methods, *IEEE Computer Society*, (36) 6 (2003), pp. 57–66.
- [3] B. Boehm, R. Turner, *Balancing Agility and Discipline: A Guide for the Perplexed*, Addison-Wesley, Boston, MA, 2004.
- [4] J. Sheffield, J. Lemétayer, Factors associated with the software development agility of successful projects, *International Journal of Project Management*, (31) 2 (2013), pp. 459–472.

- [5] S. Lazaros, D. C. Prodromos, Quality vs risk: An investigation of their relationship in software development projects, *International Journal of Project Management*, (32) 6 (2014), pp. 1073–1082.
- [6] O. McHugh, H. Mairéad, Investigating the rationale for adopting an internationally-recognised project2 management methodology in Ireland: The view of the project manager, *International Journal of Project Management* (29) 5 (2011), pp. 637–646.
- [7] J. Xu, H. Zheng, Z. Zeng, S. Wu, M. Shen, Discrete time-cost-environment trade-off problem for large-scale construction systems with multiple modes under fuzzy uncertainty and its application to Jinping-II Hydroelectric Project, *International Journal of Project Management*, (30) 8 (2012), pp. 950–966.
- [8] I. Kononenko, A. Kharazii, N. Iranik, Selection method of the project management methodology and application, its Proceedings of the 7th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and (IDAACS'2013), Applications Berlin. Germany, (12-14)September 2013), pp. 578-582.
- [9] I. V. Kononenko, E. V. Lobach, A. V. Kharazii, Multi-criteria optimization of content for a given project priorities for criteria, *Open Information and Computer Integrated Technologies*: Transactions of National Aerospace University "HAI", (59) (2013), pp. 6-13. (in Russian)
- [10] CMMI for Development, Version 1.3, Software Engineering Institute, Carnegie Mellon University, 2010.

Igor V. Kononenko - Professor, Doctor of Technical Sciences, Laureate of the State Prize of Ukraine, Head of the Strategic Management Department of National Technical University "Kharkiv Polytechnic Institute", National Expert of UNIDO (1995-1996), Deputy Director of Institute of Machinery and Sys-

tems of the Ministry of Industrial Policy and National Academy of Sciences of Ukraine (1993-2002), an expert in forecasting and management of the development of socio-economic systems. Under his direction a computerized simulation models of the socio-economic development of Ukraine has been developed. Author of more than 220 scientific works, 7 books on forecasting, strategic and project management.

Anna Kharazii — Master of science in Project Management, a graduate of Strategic Management Department of National Technical University "Kharkiv Polytechnic Institute", since 2013 - a postgraduate student in the same department. Engaged in research of optimization problems of project

management, and studied the influence of methodologies on project characteristics. Since 2010 she is a coordinator of the annual international conference «INTEGRATED MANAGEMENT». She is an author of 10 scientific publications.