ЭКСИТОННЫЕ СПЕКТРЫ ПОГЛОЩЕНИЯ ТВЕРДЫХ РАСТВОРОВ СЕГНЕТОЭЛАСТИКОВ Cs₂CdI₄ и Rb₂CdI₄.

Харьковский национальный университет радиоэлектроники Ст. Б. Д. Кравченко Рук. доц. Е.Н. Коваленко

Соединения Cs_2CdI_4 и Rb_2CdI_4 относятся к сегнетоэластикам с несоразмерной фазой. Сегнетоэластиками являются кристаллы, в которых при понижении температуры возникает спонтанная деформация кристаллической решетки в отсутствие внешних механических напряжений. Оба соединения в упорядоченной соразмерной фазе имеют орторомбическую решетку с близкими параметрами, что способствуют образованию твердых растворов во всем интервале концентраций.

В настоящей работе исследованы спектры поглощения твердых растворов $(Cs_{1-x}Rb_{x})_{2}CdI_{4}$ в интервале концентраций $0 \le x \le 1$.

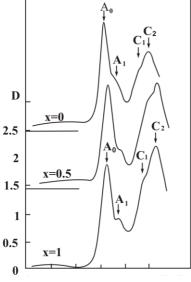


Рис. 1. Спектры поглощения тонких пленок ($Cs_{1-x}Rb_y$)₂CdI₄.

По структуре спектра и положению основных полос спектры поглощения тонких пленок (Cs_1 $_xRb_x$) $_2CdI_4$ $0 \le x \le 1$ подобны (рис.1). В спектрах при T=90 К наблюдаются интенсивная A_1 -полоса, более слабая A_2 -полоса, высокочастотные B_1 и B_2 -полосы. С ростом температуры A и B полосы сдвигаются в длинноволновую область спектра, уширяются и ослабляются за счет экситон-фононного взаимодействия, что указывает на их связь с экситонными возбуждениями.

Параметры длинноволновых экситонных полос (положение E_m , полуширина Γ и ϵ_{2m} — значение мнимой части диэлек-

трической проницаемости в максимуме полосы) определялись путем аппроксимации экспериментальной зависимости оптической плотности смешанным симметричным контуром, представляющим собой линейную комбинацию лоренцева и гауссова контуров. При аппроксимации добивались наилучшего согласия расчетного контура с измеренными спектрами оптической плотности на длинноволновом склоне полос.

Было обнаружено, что концентрационный ход $E_m(x)$ и $\Gamma(x)$ линеен и описывается зависимостями

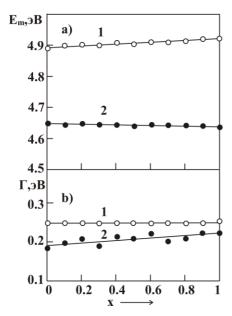


Рис. 2 Концентрационная $\Gamma(x)$ (б) длинноволновых экситонных полос $A_1(2)$ и $A_2(1)$.

зависимость спектрального положения $E_m(x)$ (a) и полуширины

 $E_m(x) = E_m(0) + ax,$ $\Gamma(x) = \Gamma(0) + Ax,$ где $E_m(0) = 4.65$, 4.89 эВ, a = $dEm/dx = -1.2 \cdot 10^{-3}, 3 \cdot 10^{-3} \text{ 3B},$ $\Gamma(0) = 0.18, 0.25 \text{ 3B}, A = d\Gamma/dx$ $=4.5\cdot 10^{-3}$, 0 эВ для полос A_1 и A_2 .

Для выяснения характера экситонных состояний в $(Cs_1 - {}_xRb_x)_2CdI_4$ был оценен радиус экситона a_{ex} : $a_{ex} = 6.5 \text{ Å}$ для Cs_2CdI_4 и $a_{ex} = 8.2$ Å для Rb₂CdI₄.

Полученные данные были использованы для сравнения характеристик экситонов в Cs₂CdI₄ и Rb₂CdI₄ с соответствующими характеристиками для CdI2, RbI и CsI, синтез которых дает кристаллическую структуру сегнетоэластиков.

Результаты всестороннего анализа свидетельствуют о локализации экситонных состояний в подрешетке CdI_2 в большей степени в Rb₂CdI₄ и в меньшей в Cs₂CdI₄ и на принадлежность экситонов в сегнетоэластиках экситонам проме-

жуточной кулоновской связи.