J. Baumeister, US Patent 5 151 246, 1992.

A. Sosnik, US Patent 2434775, 1948.

J. S. Elliott, US Patent 2751289, 1956.

V. Gergely and B. Clyne. The formgrip process: foaming of reinforced metals by gas release in precursors // Advanced engineering materials. -2000. - Vol. 2, -No.4, -P. 175-178.

Nakamura, S. V. Gnyloskurenko, K. Sakamoto, A. V. Byakova and R. Ishikawa. Development of New Foaming Agent for Metal Foam // Materials Transactions. - 2002. - 43. - P. 1191-1196.

V.I. Shapovalov, US Patent 5181549, 1993.

H. Nakajima et al., Fabrication of porous copper by unidirectional solidification under hydrogen and its properties // Colloids Surf., A-2001. -179.- P.209-214.

I. Jin, L.D. Kenny and H. Sang, US Patent 5112697, 1992.

А.В. Бякова, В.П. Красовский, А.О. Дудник, С.В. Гнилоскуренко,

А.И.

Сирко. О роли смачиваемости и распределения твердых частиц в стабилизации вспененных алюминиевых расплавов // Адгезия расплавов и пайка материалов. — 2009. N942. - C. 5-22.

УЛК 669.715: 673.3: 621.74.043

В. П. Головаченко, Г. П. Борисов, В. М. Дука, А. Г. Вернидуб Физико-технологический институт металлов и сплавов НАН Украины, Киев

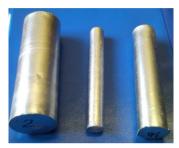
НОВЫЙ СПОСОБ ЛИТЬЯ ЗАГОТОВОК ИЗ ЦВЕТНЫХ СПЛАВОВ

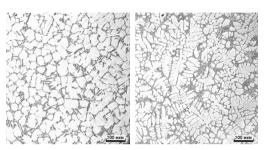
В Физико-технологическом институте металлов и сплавов НАН Украины проводятся широкомасштабные исследования оригинального способа литья заготовок из цветных сплавов «сегодня на сегодня» (патент находится в завершающей стадии оформления).

Новый способ не требует капитальных затрат на оснастку. В литейной форме, которая может быть изготовлена в течение нескольких минут, отсутствуют литейные уклоны, что повышает точность заготовок.

Способ предназначен для изготовления цилиндрических (диаметром до 50 мм) и прямоугольных заготовок высотой до 150 мм.

Как показали предварительные исследования, с использованием нового способа также возможно изготовление определенной номенклатуры фасонных отливок повышенной точности с достаточно высокой чистотой поверхности.


В качестве примера на рисунке приведены цилиндрические заготовки, изготовленные из алюминиевого сплава АК7, а также их микроструктура.


В зависимости от скорости охлаждения заготовки в ней может форми-

роваться глобулярная, дендритная либо смешанная структура с размерами глобулей 40-120 мкм, дендритов от 100 до 450 мкм.

Заготовки с глобулярной микроструктурой могут быть востребованы в прогрессивных технологиях рео- и тиксолитья.

Достигнут уровень прочности литых заготовок из сплава АК7, что превышает требования ГОСТа 1583-93.

59

Рис. – Литые заготовки из сплава АК7 и их микроструктура, полученные новым метолом литья

УДК 669.18

А. В. Гресс, С. А. Стороженко
Днепродзержинский государственный технический университет,
Днепродзержинск

О ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ МЕТОДА ЭЛЕКТРОДИФФУЗИ-ОННОЙ ДИАГНОСТИКИ ДЛЯ МОДЕЛИРОВАНИЯ ГИДРОДИНАМИКИ МЕТАЛЛА В ЛИТЕЙНЫХ КОВШАХ

Для оптимизации гидродинамических потоков металла в литейных ковшДля оптимизации гидродинамических потоков металла в литейных ковшах необходима информация об основных их характеристиках. Для ее получения целесообразно использовать различные виды моделирования.

Наиболее доступным методом исследований является «холодное» физическое моделирование, предусматривающее замену металла какой-либо жидкостью (чаще всего водой). Наиболее простым способом определения параметров движения жидкости является метод «треков». Согласно этому методу в жидкость вводят светоотражающие частицы, имеющие нулевую плавучесть и размеры, позволяющие им передвигаться в пространстве модели со скоростями, соответствующими скоростям потоков моделирующей

среды. Эксперименты на таких установках проводят в затемненном помещении посредством фото- и/или видеосъемки участка модели, освещенного обтюрируемым пучком света (иногда стробоскопированного). В силу объективных и субъективных обстоятельств такой метод не является высокоточным, что предопределяет невысокую степень адекватности построенных на его результатах численных моделей гидродинамики жидкости.

В последние десятилетия интенсивно развивается новое направление исследования локальных характеристик потоков — электродиффузионная диагностика, основанная на зависимости величины тока между помещенными в поток электродами от скорости обтекания рабочего электрода электролитом заданного состава.

В условиях лаборатории физического моделирования кафедры литейного производства ДГТУ для моделирования гидродинамики металла в литейных ковшах создана прозрачная экспериментальная установка в масштабе 0,6 реального ковша. Определяющими критериями при создании модели и исследованиях являлись число Лапласа и модифицированное число Фруда. Моделировали поведение металла в литейных ковшах при их продувке нейтральным газом, для чего в днище модели был предусмотрен продувочный узел, расположение которого можно менять в зависимости от задач эксперимента. Для продувки жидкости применяли сжатый воздух.

Эксперименты осуществляли в два этапа. На первом этапе использовали метод «треков». Жидкий металл и шлак моделировали, соответственно, водой и растительным маслом. В качестве индикаторов движения жидкостных потоков использовали полистироловые шарики диаметром 1-1,5 мм с нулевой плавучестью. Обработка результатов экспериментов позволила получить численные значения скоростей потоков жидкости, направление и расположение вихрей в объеме ковша.

На втором этапе экспериментов использовали метод электродиффузионной диагностики. Электронный блок электрохимического анемометра обеспечивает возможность локальных измерений массообмена, имеет блок питания электрохимической ячейки и два независимых канала усиления, которые обеспечивают режим ступенчатой поляризации электрода,, режим анодно-катодной активации. Прибор снабжен блоком регистраторов нагрузки, напряжение с которых может поступать на фильтры верхних или нижних частот. Регистрация выходного сигнала производится электронным амперметром и запоминающим осциллографом типа C8-13. В качестве первичных датчиков использовались платиновые микроэлектроды. Металл моделировали электролитом, содержащим $K_3 Fe(CN)_6$ (2,50.10°2 кмоль/м³), $K_4 Fe(CN)_6$ 3H₂O (2,50 10°2 кмоль/м³), $K_2 SO_4$ (2,30 10°1 кмоль/м³), растворенных в дистиллированной воде.

Сравнение результатов первого и второго этапов экспериментов показало

возможность успешного применения указанного комплекса приборов для электродиффузионной диагностики потоков жидкости в объеме литейного ковша. Разница определения значений скоростей в характерных точках объема литейного ковша не превышала 10%.

УДК 621.74

Ю. И. Гутько, Н. А. Тараненко

Восточноукраинский национальный университет имени Владимира Даля, Луганск

МАТЕМАТИЧЕСКИЕ МОДЕЛИ ТЕПЛОВЫХ РЕЖИМОВ ПРИ ИЗГОТОВЛЕНИИ МОДЕЛЕЙ ИЗ ПЕНОПОЛИСТИРОЛА

Процесс литья по газифицируемым моделям хорошо известен своим многосторонним применением и является перспективным для более экономичного производства сложных отливок по сравнению с традиционными процессами литья.

Поскольку данный процесс литья является новым факторы, влияющие на получение качественных моделей из пенополистирола, еще недостаточно изучены. Следовательно, существует потребность в дальнейших исследованиях в данной области.

Необходимым условием для получения качественных моделей из пенополистирола влияют тепловые свойства пенополистирола и характер тепловых процессов при его обработке.

Анализ литературных источников позволил сделать вывод что в работе [1] для установления теплового режима обработки пенополистирола сравнивалось качество пенополистирола, получаемого при различном времени выдержки, проверялось качество заполнения этим материалом пресс-форм и склеивания гранул между собой однако не учитывает трехмерную конфигурацию модели.

В работе [2] авторами изучались изменения теплофизических параметров, действующих в процессе вспенивания гранул, спекания и охлаждения моделей, определили таким образом оптимальный интервал, в котором могут изменятся эти параметры

Математические зависимости [2] выбора оптимального времени предварительного вспенивания выведены на основе экспериментов и только для одномерных моделей (учитывающих только толщину стенки), что не позволяет определить точно время спекания трехмерных сложных отливок.