Кроме того, согласно результатам экспериментальных исследований введена поправка, учитывающая выделение теплоты фазового перехода при эвтекто-идном превращении. Изменение толщины воздушного зазора между отливкой и кокилем рассчитывали в зависимости от толщины затвердевшего слоя металла. Массоперенос, вызванный "дождем кристаллов" в нижнюю шейку, в тепловом расчете учитывали соответствующим уменьшением на 20% значения теплоты фазового перехода объема металла, заключенного в нижней шейке валка. Все это позволило достаточно точно адаптировать результаты экспериментальных замеров и компьютерного моделирования.

При моделировании изменяли температуру заливки чугуна с 1270, 1320, 1370 до 1420 0 С и скрытую теплоту кристаллизации различных частей отливки. Установлено, что при температуре заливки 1320 0 С бочка валка диаметром 450 мм, охлаждающаяся в кокиле, затвердевает за \sim 70 мин., в 2 раза быстрее нижней Ø 320 мм и в 2,6 раза быстрее верхней шейками валка Ø 330 мм, которые охлаждаются в песчаной форме.

Сравнение температур затвердевания центральной части бочки валка с нижней и верхней шейками показало, что сразу после окончания заливки температура во всем объеме отливки практически выравнивается. Однако неожиданно уже через 3-4 мин и до ~50 мин в осевой зоне бочки температура выше, чем в шейках. И это несмотря на то, что продолжительность затвердевания шеек 2,0-2,6 раза больше. Причем, разность температур между центрами бочки, верхней и нижней шейками непостоянна. Установлено, что разность температур выше при температурах ликвидус и солидус в период кристаллизации бочки валка.

Поэтому можно считать, что в микрообъемах расплава на границе затвердевания в момент перехода сплава из жидкого в твердое состояние выделение скрытой теплоты кристаллизации создает «тепловой экран» и замедляет теплоотвод из осевой зоны бочки в кокиль. Избыточное тепло отводится в литейную форму и в затвердевший слой металла, но не повышает температуру металла выше TL и TS. Образование разветвленных дендритов (фрактальной структуры), обеспечивает максимально повышенный сток тепла от фронта затвердевания в литейную форму. Поэтому при резком увеличении количества выделившейся скрытой теплоты кристаллизации происходит остановка затвердевания до момента полного отвода тепла из микрообъемов расплава на фронте затвердевания.

УДК 621.74.04

Г. Д. Хуснутдинов, Б. Г. Зеленый Физико-технологический институт металлов и сплавов НАН Украины, Киев

ТЕХНОЛОГИЧЕСКИЕ ПРИЕМЫ ОБРАБОТКИ ЧУГУНА НИТРИДОМ МАГНИЯ ДЛЯ ПРОИЗВОДСТВЕННЫХ УСЛОВИЙ

Развитая поверхность контакта расплава и реагента является непременным условием интенсивного расходования реагента, содержащего нитрид магния (РНМ). В лабораторных экспериментах использовали различные приемы увеличения контактной поверхности РНМ с целью установить их эффективность и применимость в производственных условиях. Критериями оценки эффективности служили максимальное достигаемое содержание магния в расплаве и необходимая для этого продолжительность обработки.

Эксперименты проводили на высокочастотной плавильной печи, обрабатывая расплав чугуна в плавильном тигле. Во всех опытах масса расплава составляла $10~\rm kr$. Температура расплава при обработке поддерживалась в пределах $1400-1500^{\rm o}$ С периодическим подогревом. С целью упрощения оценки усвоения магния минимизировали расход магния на десульфурацию расплава, используя низкосернистый чугун (содержание серы в исходном чугуне не более 0.02~%).

Увеличение контактной поверхности РНМ с расплавом достигали тремя способами. В первом, изменяя форму брикета реагента, увеличивали его открытую поверхность. В этом случае брикет целиком принудительно погружается в расплав. В производственных условиях такой прием возможен при формировании брикета непосредственно на днище литейного ковша. Экспериментом установлена принципиальная возможность получения брикета РНМ закрепленного на подложке в виде слоя толщиной 0,4-0,5 см при нагревании смеси порошков магния и графита. Однако формирование такого брикета на футеровке литейного ковша требует уточнения технологии нагрева порошковой смеси.

За счет развития поверхности контакта брикета реагента с расплавом содержание магния в чугуне, гарантирующее сфероидизацию графита (более 0,03 %) может быть достигнуто в течение 1,5 мин. За все время обработки, длившееся 3 мин, массовая доля магния повысилась до 0,038 %, что сопоставимо с интенсивностью поступления магния в чугун при использовании традиционных магниевых присадок.

Во втором варианте брикет реагента разделили на фрагменты с максимальным размером в поперечнике 6-10 мм. Это позволяло существенно увеличить контактную поверхность реагента и его полное расходование, если обеспечивалось «омывание» расплавом каждого в отдельности фрагмента.

После расплавления и перегрева чугуна до 1500° C на его зеркало компактно размещали фрагменты реагента. До начала взаимодействия с расплавом их накрывали графитовым колоколом и погружали в глубину металлической ванны. Максимальная массовая доля магния в чугуне достигается в течение трех минут и составляет 0.033~%.

Многократное увеличение контактной поверхности РНМ с расплавом может быть достигнуто путем измельчения реагента, а эффективное использование измельченного реагента требует дозированной его подачи в расплав, исключающей чрезмерно активное взаимодействие. Должно быть учтено два характерные качества РНМ: плохая смачиваемость расплавом и начало взаимодействия только после некоторой выдержки реагента в расплаве. Устройство для ввода порошкового РНМ в расплав представляет собой графитовый стакан с глухим дном. Погружную штангу закрепляли внутри по центру стакана с помощью винта. Порошок реагента засыпали в пространство между стенками стакана и погружной штангой и утрамбовывали. После нагревания чугуна до 1500°C стакан с реагентом медленно погружали в расплав, перемещая к донной части плавильного тигля. В процессе погружения уплотненный порошок реагента не всплывает, поскольку из-за плохого смачивания расплав не проникает в толщу порошка. К моменту предельного погружения в контактной поверхности РНМ с расплавом начинается их взаимодействие и частицы реагента послойно всплывают из внутреннего пространства стакана в расплав. За 7,5 мин реагент был израсходован полностью. Конечное содержание магния достигло 0,041 %.

Результаты опытов позволяют сделать заключение, что при использовании порошкообразного РНМ в производственных условиях необходимо решить достаточно тривиальную задачу: доставить реагент в придонную зону металлической ванны и удерживать его в этой зоне до начала взаимодействия с расплавом.

Решения могут быть традиционными с некоторой корректировкой, учитывающей специфику РНМ. Рассмотрим, например, вариант обработки чугуна в ковше, аналогичный «сендвич»-процессу. При коэффициенте усвоения магния, равном 50 % и содержании серы в исходном чугуне 0,05 % для получения высокопрочного чугуна в ковше емкостью 1 т потребуется 3 кг РНМ. Эта масса РНМ содержит около 1 кг магния и занимает в порошкообразном состоянии объем, равный 3 дм³. Такой объем реагента можно разместить в нескольких нишах, выполненных в футеровке днища ковша. Вместимость каждой ниши определяет их количество, а форма (диаметр и глубина) влияют на интенсивность обработки.

Вместо ниш в футеровке ковша возможно применение расплавляемой чугунной «решетки» соответствующей конфигурации.

УДК 621.74

И. В. Цветков, М. И. Гасик

Национальная металлургическая академия Украины (НМетАУ), Днепропетровск

ВЛИЯНИЯ СТРУКТУРЫ И ХИМИЧЕСКОГО СОСТАВА ФЕРРОСИЛИЦИЯ НА ЕГО ИСПОЛЬЗОВАНИЕ ПРИ ОБРАБОТКЕ СТАЛИ

В настоящее время на ряду с повышением качества материалов, снижения материальных и энергетических затрат, одним из приоритетных направлений развития металлургической отрасли, является повышение экологической безопасности производства. В тоже время применяемые в литейной, сталеплавильной промышленности высококремнистые марки ферросилиция вызывают ряд проблем небезопасных для здоровья персонала. Ферросилиций подвержен самодиспергированию результатом, которого является ухудшение потребительских качеств, изменение фракционного состава, а так же выделение вредных ядовитых газов, иногда приводящее к трагическими последствиям.

Явление рассыпания ферросилиция известно сравнительно давно, но, как свидетельствуют данные [1-3], продолжает иметь место, при его транспортировке и при хранении. Самодиспергирование в значительной степени связано со структурой и физико-химическими характеристиками высококремнистого ферросилиция.

В работе проведена оценка влияния структуры, химического состава и воздействия внешних факторов - увлажнение морской (предложенная методика) и дистиллированной водой (определяемая в соответствии с ГОСТ 19433-88), на параметры образования газовой фазы содержащей ядовитые газы РН₃ и AsH₃. Обобщены данные аналитического обзора методик испытания и механизма рассыпания ферросилиция с газовыделением. Выполнено оценка влияния морской воды на скорость газовыделения при увлажнении высококремнистого ферросилиция, проведено сравнение данных с результатами полученными по стандартной методике с использованием дистиллированной воды. Установлено, что морская вода увеличивает скорость и полноту взаимодействия в сравнении с дистиллированной водой.

Проанализированы методы оценки склонности высококремнистого ферросилиция к газовыделению и повторяющиеся случаи отравления (иногда с летальным исходом) членов экипажей морских судов, транспортирующих фракционированный ферросилиций. Так в 2001г. имело место отравление экипажа судна «Мунир-Коч» (Бердянский морской порт). По причине рассыпания ферросилиция с выделением ядовитых газов произошло групповое отравление 12 членов экипажа теплохода «Фрост» в морском порту Таганрога в ноябре 2005г. В январе 2007г было 2 летальных исхода и отрав-