Л. В. Трибушевский, Б. М. Немененок, Г. А. Румянцева, С. П. Задруцкий, А. Д. Иванов

Белорусский национальный технический университет, Минск

ОСОБЕННОСТИ ПЫЛЕГАЗООБРАЗОВАНИЯ ПРИ ПЛАВКЕ СТРУЖКИ АЛЮ-МИНИЕВЫХ СПЛАВОВ В КОРОТКОПЛАМЕННОЙ РОТОРНОЙ ПЕЧИ

При рециклинге дисперсных отходов алюминиевых сплавов наиболее целесообразно использование роторных печей.

Однако для достижения удовлетворительной степени извлечения алюминия необходимо применение большого количества флюсов (до 400 кг на 1 т алюминия), что приводит к образованию значительных объемов отходящих газов, для очистки которых требуется дорогостоящая и сложная аппаратура. Кроме того, возникает проблема переработки солевых шлаков, накапливающихся в больших количествах. Поэтому необходима оптимизация технологии переработки отходов алюминия с учетом экологических требований к защите окружающей среды.

В качестве объекта исследования была выбрана короткопламенная роторная печь емкостью 800 кг, работающая на жидком топливе.

Пробы пыли в отходящих газах отбирали от боровов перед циклоном на протяжении всей плавки. Параллельно определяли содержание в газах СО, NO и NO_x с помощью электронного газоанализатора MSI 150 "EURO". Концентрацию хлоридов и фторидов контролировали по стандартным методикам.

Для исследований использовали добавку флюса в количестве 12 % от массы металлозавалки и наряду со стандартным рафинирующим флюсом (47 % KCl, 30 % NaCl, 23 % Na₃AlF₆) применяли покровно-рафинирующий флюс (13 % KCl, 55 % NaCl, 17 % Na₃AlF₆, 10 % Na₂CO₃, 5 % CaCO₃·MgCO₃).

В разогретую печь перед началом плавки засыпали около 4 % флюса и по мере его расплавления в несколько приемов загружали подготовленную алюминиевую стружку, которую замешивали в расплав за счет вращения печи.

Оставшийся флюс засыпали постепенно по мере завалки шихты и ее расплавления. В конце плавки расплав перегревали примерно до 780 °С и сливали в ковш для дальнейшей разливки в чушки, а образовавшийся шлак сбрасывали в контейнер.

Следует отметить существенные колебания газа по запыленности и химическому составу для обеих серий плавок при загрузке шихтовых материалов и во время плавки. Удельные выбросы загрязнений при загрузке шихты и во время плавки приведены в таблицах 1, 2.

Таблица 1 – Удельные выбросы загрязняющих веществ (кг/т) при переплаве алюминиевой стружки в короткопламенной роторной печи в период загрузки

Варианты	Пыль	Хло-	Фториды	Оксиды	Оксиды	Диоксид	Прочие
технологий		риды		азота	углерода	серы	
плавки							
серийная	4,1814	0,7229	0,2854	0,2953	2,4067	0,5417	0,5395
опытная	4,0712	0,7023	0,2644	0,2958	0,4095	0,5392	0,5384

Примечание: в графе «прочие» приведено суммарное значение удельных выбросов углеводородов С11-С19, формальдегида, ацетона, уксусной кислоты, фенола, метанола и толуола, которые выделяются при завалке шихты в разогретую роторную печь. При плавке данные соединения не выделяются.

Таблица 2 – Удельные выбросы загрязняющих веществ (кг/т) при переплаве алюминиевой стружки в короткопламенной роторной печи в период плавки

Варианты	Пыль	Хлориды	Фториды	Оксиды	Оксиды	Диоксид
технологий				азота	углерода	серы
плавки						
серийная	0,9955	0,4948	0,1192	0,2764	1,3887	0,2083
опытная	0,9920	0,4816	0,1075	0,2769	1,3906	0,2041

Следует отметить, что по обеим технологиям доля пылегазовых выбросов при загрузке шихты составляла около 70 %. Это связано, в первую очередь, с выгоранием загрязнений, вносимых шихтой — остатков масел, смазочно-охлаждающей жидкости (СОЖ), органических соединений. Как следует из таблиц 1, 2 использование нового флюса незначительно снижает удельные выбросы, поскольку их главным источником являются компоненты шихты.

Взвешивание продуктов плавки после их охлаждения показало, что использование нового флюса обеспечило увеличение металлургического выхода с 83,2 % до 85,0 % по сравнению с серийной технологией, содержание алюминия в шлаке снизилось с 11,2 % до 7,6 % при уменьшении общего количества шлака с 29,2 % до 27, 3 %. Полученные результаты подтвердили целесообразность использования предложенного варианта технологии переплава стружечных отходов алюминиевых сплавов в роторной печи.