С.И. Репях

Национальная металлургическая академия Украины, Днепропетровск

О КРИСТАЛЛИЗАЦИИ МЕТАЛЛОВ

Согласно современным представлениям, основной движущей силой процесса кристаллизации является термодинамический фактор — стремление вещества к наиболее устойчивому в термодинамическом отношении, состоянию, которое характеризуется наименьшим уровнем свободной энергии. Внутренняя энергия расплава всегда выше энергии твердого тела. Поэтому при кристаллизации расплава выделяется тепловая энергия — разница в энергетическом состоянии жидкого (расплава) и твёрдого тела. Исходя из этого, температура начала кристаллизации расплава будет соответствовать состоянию термодинамической системы, при котором энергии Гиббса (свободные энергии) твердой (G_T) и жидкой ($G_{\rm ж}$) фаз будут равны между собой. Энергию Гиббса вычисляют по формуле:

$$G = E - T \cdot S + pV = H - T \cdot S, \tag{1}$$

где E – внутренняя энергия фазы; р – давление, оказываемое на рассматриваемую термодинамическую систему извне; V – объём фазы; Т –температура рассматриваемой термодинамической системы; S – энтропия (мера разупорядоченности фазы, мера рассеянной энергии); Н – энтальпия.

Исходя из (1), а также квазиполикристаллического строения жидкости, для превращения кластера в центр кристаллизации (ЦК) необходимо:

<u>вариант 1</u> – понизить температуру расплава ниже температуры его равновесной кристаллизации, что собственно и происходит при получении всех промышленно производимых литых изделий;

<u>вариант 2</u> – при неизменной температуре перегрева сжать расплав, что также подтверждено как экспериментальными данными, так и законом Клайперона-Клаузиуса.

По варианту 1, кластер превращается в ЦК по достижении определённого размера, который называют критическим радиусом кластера и рассчитывают по известной формуле:

$$r_K = \frac{2 \cdot \sigma \cdot T_{\Pi \Pi}}{\Delta H_{\Pi \Pi}^{-1} \cdot \Delta T},\tag{2}$$

где σ – удельная поверхностная энергия на границе кристалл - расплав; $T_{\Pi \Pi}$ – температура плавления (равновесная температура кристаллизации) вещества; $\Delta H_{\Pi \Pi}{}^1$ – удельная теплота плавления (кристаллизации) вещества; ΔT – температура переохлаждения расплава при которой начинается его кристаллизация.

В соответствии с (2), величина r_K тем меньше, чем больше значение ΔT . Следует отметить, что использование формулы (2) имеет ряд ограничений применения, поскольку при $\Delta T = 0$ она теряет математический смысл, при $\Delta T \to 0$ величина $r_K \to \infty$, а при $\Delta T \to \infty$ величина $r_K \to 0$, что лишено физического смысла. Поэтому, формулу (2) недопустимо использовать для анализа зависимости $r_K = f(\Delta T)$ и следует использовать только для расчёта величины минимального переохлаждения расплава, при которой начнётся его затвердевание. Для этого формулу (2) следует записать в виде:

$$\Delta T_{MIN} = \frac{2 \cdot \sigma \cdot T_{\Pi J I} \cdot M}{\Delta H_{\Pi J I} \cdot r_{K}},$$
(3)

где М — молекулярная масса вещества, кг/моль; $\Delta H_{\Pi\Pi}$ — мольная теплота плавления (кристаллизации) вещества.

При этом, по-видимому, радиусы кластеров при кристаллизации (r_K) и при плавлении металла должны быть равными.

Исходные данные и минимальные значения величин переохлаждения некоторых веществ, рассчитанные по формуле (3), приведены в таблице.

Элемент	σ ·10 7 , Дж/см 2	Тпл, К	∆Нпл, Дж/моль	М, кг/моль	г _к ·10 ⁸ , см	Δ T _{MIN} , K	Элемент	σ ·10 7 , Дж/см 2	Тпл, К	∆Нп, Дж/моль	М, кг/моль	г _к ·10 ⁸ , см	Δ T _{MIN} , K
Al	93	933	11300	0,02698	1,56	2,7	Ве	178	1551	12210	0,00901	1,50	2,7
Fe	201	1812	15470	0,05585	1,61	16,3	Ga	56	303	5590	0,06972	1,38	3,1
Ni	255	1725	16900	0,05869	1,73	17,7	Zn	101	693	6650	0,06539	1,59	8,7
Со	200	1768	15700	0,05893	1,34	19,8	Na	20	371	2640	0,02299	1,67	0,8
Pb	33	600	4810	0,20730	2,54	6,7	In	26	429	3240	0,11482	2,04	3,9
Sn	59	505	7070	0,11871	1,99	5,0	Hg	28	234	2295	0,20059	1,87	6,1
Ag	126	1235	11950	0,10787	1,56	18,0	Bi	54	544	11300	0,20898	2,01	5,4
Au	139	1337	12200	0,19697	1,91	31,4	Sb	101	904	20080	0,12176	1,13	9,8
Pd	209	1827	17570	0,10642	1,89	24,5	Ge	181	1210	36800	0,07261	2,39	3,6
Cu	142	1356	13050	0,06355	1,48	12,7	Si	570	1688	50400	0,02809	0,74	14,5

Из изложенного следует, что образование ЦК по варианту 1 проходит при строго определённой величине радиуса кластера и не зависит от глубины переохлаждения расплава:

$$r_K = const, r_K \neq f(\Delta T).$$

В этом случае, если между скоростью охлаждения расплава и скоростью роста кластеров возникнет диспропорция в пользу скорости охлаждения, то к моменту охлаждения расплава до температуры равновесной кристаллизации ($T_{KP} = T_{\Pi\Pi}$), ни один из кластеров не увеличиться до размера r_K и расплав будет переохлаждаться. То есть, если при T_{KP} величина $r < r_K$, то при дальнейшем охлаждении температура расплава будет понижаться ниже температуры T_{KP} такое время, за которое радиус кластера увеличится до значения r_K . Величину переохлаждения расплава в этом случае можно рассчитать по формуле:

$$\Delta T = W \cdot \tau_{P}, \tag{4}$$

где W — скорость снижения температуры переохлаждённого расплава, К/с; τ_P — время достижения кластером критического размера в переохлаждённом расплаве (в интервале температур от T_{KP} до T_{KP} — ΔT), с.

Время τ_P зависит, как от вязкости переохлаждённой жидкости, так и от размера кластеров (r), которые они имели к моменту достижения расплавом температуры T_{KP} . Если при охлаждении расплав достиг температуры T_{KP} и $r=r_K$, то его кристаллизация начнётся при температуре T_{KP} . Если металлическая жидкость охлаждается со скоростью $W \to \infty$, либо её вязкость будет столь велика, что $\tau_P \to \infty$, то, в соответствии с (4) металл вместо кристаллической структуры приобретёт структуру аморфную, поскольку в этих случаях $\Delta T \to \infty$.

УДК 621.74.045

С.И. Репях

Национальная металлургическая академия Украины, Днепропетровск

РАЗМЕРЫ КЛАСТЕРОВ ПРИ ТЕМПЕРАТУРЕ ПЛАВЛЕНИЯ МЕТАЛЛОВ

Рассматривая процесс плавления металлов с позиций волновой теории и на основе квазиполикристаллической модели строения металлической жидкости, предположили, что кластеры образуются в предплавильный период без образования активированных атомов, а размеры кластеров соответствуют размерам