индивидуальным влиянием отмеченных добавок на процесс кристаллизации и морфологию железосодержащих фаз [1].

Список литературы

1. *Пригунова А.Г.* Повышение прочности и пластичности вторичных силуминов микродобавками // Металлофизика и новейшие технологии.-1998.-Т.20.-№10.-С.43-49.

УДК 669.2/8.017

А.Г. Пригунова 1 , С.С. Петров 2

¹Физико-технологический институт металлов и сплавов НАН Украины, Киев; ³Национальная металлургическая академия Украины, Днепропетровск

ОСОБЕННОСТИ СТРУКТУРООБРАЗОВАНИЯ ЦИНКОВИСТЫХ СИЛУМИНОВ

Еще в 1947 г. Бочвар А.А. научно обосновал возможность получения высококачественных литейных сплавов на основе системы Al-Si-Zn. Согласно ГОСТ 1583-73 практически все литейные алюминиевые сплавы имели ограничение по содержанию цинка, что препятствовало рациональному использованию лома и отходов с повышенным содержанием этого компонента. Существенный разрыв между теоретическими разработками и практикой, прежде всего, был связан с недостаточной изученностью процессов формирования структуры цинковистых силуминов.

Жидкие алюминиево-кремниевые сплавы имеют микронеоднородное строение: в разупорядоченной зоне, представляющей собой микрообласти со статистическим распределение атомов AI и Si, распределены кластеры Si с ближним порядком атомов типа простого куба. В расплавах силуминов цинк не образует кластеры с собственной структурой, а сосредотачивается в кластерах кремния, разупорядоченной зоне, а в сложнолегированных сплавах - и в кластерах более сложного состава - Fe_XSiyAI_Z. При температурах 640...750^OC цинк уменьшает степень микронеоднородность расплавов. В этом смысле его воздействие аналогично повышению температуры. Наиболее сильное модифицирующее влияние цинка наблюдается при его концентрации 1,5 %.

По устоявшимся представлениям в Al-Si сплавах Zn сосредотачивается исключительно в твёрдом растворе алюминия (Al_{α}). Установлено аномальное, с точки

зрения общепринятых взглядов, увеличение растворимости Zn в AI_{α} при уменьшении скорости охлаждения расплава с 10^7 до 5 К/мин. При $V_{OX\Pi}$ = 5...10 К/мин цинк практически полностью переходит из кластеров в разупорядоченную зону расплава, в которой формируются дендриты твёрдого раствора алюминия. С увеличением скорости охлаждения происходит перераспределение Zn: уменьшается его содержание в AI_{α} , увеличивается - в интерметаллидах α -(Fe,Mn,Cu)3Si2Al15 и β -FeSiAl5. Для оценки времени, необходимого для перехода Zn из кластеров и сформировавшихся на их основе железосодержащих интерметаллидов в AI_{α} , использовано решение уравнения диффузии. Учитывая, что интерметаллид β имеет пластинчатую форму, рассмотрели диффузионную задачу массопереноса цинка из слоя толщиной h, заключенного между плоскостями α 0 и α = h, в слой, находящийся между α = 0 и α = L (Рис. 1).

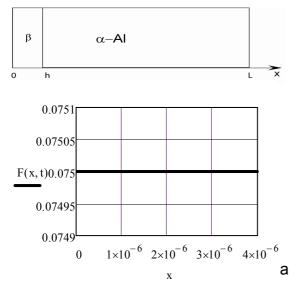


Рис. 1 Схема, поясняющая задачу диффузии цинка из интерметаллида β

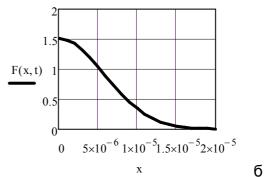


Рис. 2. Распределение цинка от центра β – фазы (по толщине кристалла): $a - V_{oxn} = 3600 \, ^{\circ}\text{C/muh}$; $6 - V_{oxn} = 10 \, ^{\circ}\text{C/muh}$

Решение задачи диффузии для начальных условий $F(x) = C_0$, при 0<x<h и F(x) = 0, при h<x<L имеет вид:

$$F(x,t) = C_0 \left(\frac{h}{L} + \frac{2}{\pi} \sum_{1}^{\infty} \frac{1}{n} \exp\left[-\left(\frac{n\pi}{L}\right)^2 Dt\right] \cos\left(\frac{n\pi h}{L}\right) \sin\left(\frac{n\pi x}{L}\right), \tag{1}$$

где: h - половина толщины кристалла β -фазы; t - время процесса.

Расчеты, выполненные в соответствие с (1) для низких и высоких скоростей охлаждения (см. рис. 2) находятся в полном соответствии с результатами рентгенос-

пектральных исследований. Анализ данных эксперимента и количественных расчетов диффузии цинка позволяет утверждать, что образование фаз осуществляется путем объединения кластеров, содержащих атомы AI, Si, Fe, Zn, поступающих к межфазной границе растущего кристалла в результате массопереноса.

УДК 669.782:536.66

А.Г. Пригунова 1 , М.В Кошелев 2 , С.С. Петров 3 , С.В. Пригунов 3

¹Физико-технологический институт металлов и сплавов НАН Украины, Киев; ²Институт проблем материаловедения им. И.Н.Францевича НАН Украины, Киев; ³Национальная металлургическая академия Украины, Днепропетровск

ТЕМПЕРАТУРНЫЕ И ТЕРМОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ЗАЭВТЕКТИЧЕСКОГО СИЛУМИНА ПОСЛЕ ОБРАБОТКИ РАСПЛАВА ИМПУЛЬСНЫМ ЭЛЕКТИЧЕСКИМ ТОКОМ

Таблица Параметры кристаллизации сплава AI - 18,5 мас. % Si по данным ДТА

Образец	T _{H1}	T _{p1}	T _{H2}	T _{p2}	ΔT_p	ΔT_1	ΔT_2	Δτ	ΔT_1	ΔH^1	ΔH^2
Исходный	898 384,9	880	843	830	50	55	94	920	390	-14,7	-
Обработка II, j↑	918 367,5	891	838	816	75	80	101	1300	540	-6,8	-
Обработка III, j↑↑	923 376,6	889	840	824	65	99	84	1170	420	_	-

Примечание: индекс 1 — Si-фаза, индекс 2 — эвтектика, $T_{\rm H}$ — температура начала кристаллизации, $K; T_{\rm p}$ — температура пика (максимальной скорости тепловыделения), $K; \Delta T$ — интервал температур, $K; \Delta T$ — продолжительность кристаллизации, $C; \Delta H$ — удельная теплота кристаллизации, $D; \Delta H$ — $D; \Delta H$ —

Обработка заэвтектического силумина в жидком состоянии периодическим (циклическим) однополярным импульсным электрическим током по специальным