сплавов с температурным интервалом затвердевания около 50 °C изготавливают в основном строительный профиль. Сведения о процессах изготовления на валковых разливочных машинах проката для автомобилестроения, авиации и космической техники из алюминиевых сплавов Д16, В96, АМ₁6 и других, которые кристаллизуются в широком (≥ 100 °C) интервале температур, весьма ограничены.

Выполнены экспериментальные исследования и изучены особенности формирования листового проката из алюминиевого сплава Д16 на двухвалковой разливочной машине. Установлено, что качество листов зависит от температуры перегрева сплава, частоты вращения валков, скорости заливки металла в межвалковый зазор. Определены оптимальные технологические режимы для изготовления катаных листов толщиной от 1,9 до 4,5 мм. Показано, что при рациональных параметрах валковой разливки металла с последующей деформацией литой ленты на прокатном стане можно получать металлопродукцию с заданными структурой и прочностными характеристиками.

УДК 534.24:546.212:66.065.5

А. С. Нурадинов, А. С. Эльдарханов*, И. А. Нурадинов

Физико-технологический институт металлов и сплавов НАН Украины, г. Киев *Научный центр «Новейшие материалы и технологии», г. Москва

СПОСОБ ПОВЫШЕНИЯ ТЕПЛООТДАЧИ К ОХЛАЖДАЮЩЕЙ ВОДЕ В КРИСТАЛЛИЗАТОРЕ МНЛЗ

Возможность оптимизации тепловой работы кристаллизатора путем интенсификации теплообменных процессов на некоторых стадиях теплопередачи от жидкого металла к охлаждающей воде в кристаллизаторе МНЛЗ изучено в работах [1-4].

В данной работе методом физического моделирования исследована стадия передачи тепла от медной стенки кристаллизатора к охлаждающей воде. Как инструмент для повышения интенсивности теплоотдачи на этой стадии в данных исследованиях использованы медные втулки с различным профилем поверхности, контактирующей с охлаждающей водой: с искусственной шероховатостью и продольными или винтообразными ребрами. В ходе экспериментов прямыми замерами определены значения температур нагрева воды в баке вследствие отвода ею тепла

с поверхности втулок кристаллизатора. Коэффициент теплоотдачи охлаждающей воды (α) и количество отводимого ею тепла (Q) определены расчетным путем по разработанной методике. Полученные результаты экспериментов сведены в таблицу.

Таблица – Параметры теплообмена между кристаллизатором и охлаждающей водой

NºNº	W,	α, Вт/м²·К		Q, кДж				n _Q		
п/п	м/с	г.п.	и. ш.	г.п.	и. ш.	п.р.	в. р.	и. ш.	п.р.	в. р.
1.	0,5	1843	2378	492,8	635,7	525,4	546,2	1,29	1,06	1,11
2.	1,0	2463	3054	539,5	668,4	549,7	566,6	1,24	1,02	1,05
3.	2,0	3331	4031	564,5	694,1	593,5	618,4	1,21	1,05	1,09
4.	3,0	3987	4505	631,5	715,0	643,2	663,5	1,13	1,02	1,05
5.	4,0	4546	4909	694,2	752,8	700,0	716,5	1,08	1,01	1,03
6.	5,0	5052	5305	737,7	778,3	747,5	760,2	1,05	1,01	1,03

<u>Примечание:</u> г.п. – гладкая поверхность теплообмена; и.ш. – поверхность теплообмена с искусственной шероховатостью; п.р. – поверхность теплообмена с продольными ребрами; в.р. – поверхность теплообмена с винтообразными ребрами

Анализ полученных результатов показывает, что исследованные методы интенсификации теплообменных процессов в кристаллизаторе МНЛЗ, повышают параметры теплообмена в нем. Главным критерием оценки эффективности тепловой работы кристаллизатора, на наш взгляд, должен быть параметр, характеризующий степень увеличения теплоотдачи от поверхности теплообмена (n_Q). В рассмотренных нами методах наибольшие значения этого параметра (n_Q) получены для поверхности теплообмена с искусственной шероховатостью (n_{Qmax} = 1,29), т.е. количество отводимого тепла увеличивается до 29%, в то время как для ребристых поверхностей оно повышается максимум от 6 до 11% в зависимости от типа ребер.

Таким образом, из рассмотренных приемов интенсификации отвода тепла охлаждающей водой в кристаллизаторе МНЛЗ наиболее оптимальным вариантом является метод искусственной шероховатости теплообменной поверхности. Кроме этого, втулки кристаллизатора с искусственной шероховатостью, турбулизируя вязкий пристеночный слой потока, будут снижать образование накипи на теплообменной поверхности.

Список литературы

- 1. *Нурадинов А. С.* Теплообменные процессы при формировании непрерывнолитых заготовок // Литейщик России. 2006. № 7. С. 34-37.
- 2. *Нурадинов А. С., Эльдарханов А. С., Таранов Е. Д.* Теплообменные процессы при формировании НЛЗ в поле упругих колебаний // Сталь. 2006. № 6. С. 51-52.
- 3. Эльдарханов А. С., Нурадинов А. С., Саипова Л. Х-А., Нурадинов И. А. Интенсификация теплообмена через газовый зазор в кристаллизаторе МНЛЗ // Сталь. 2016. № 4. С. 8-11.
- 4. Нурадинов А. С., Эльдарханов А. С., Дымнич А. Х., Ноговицын А. В., Нурадинов И. А. Способ оптимизации тепловой работы кристаллизатора МНЛЗ // Процессы литья. 2016. № 2. С. 42-51.

УДК 669.715:62-412:621.74.047

С. Л. Поливода, А. В. Серый, А. Н. Гордыня

Физико-технологический институт металлов и сплавов НАН Украины, г. Киев

МЕТОДЫ ОБЕСПЕЧЕНИЯ КАЧЕСТВА ПОЛУНЕПРЕРЫВНОЛИТЫХ СЛИТКОВ ИЗ ВЫСОКОПРОЧНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ

Качественные характеристики готовых деталей закладываются при приготовлении сплава и литье слитка и зачастую не могут быть улучшены на последующих этапах технологического передела (гомогенизация, обработка давлением, термообработка). В Физико-технологическом институте металлов и сплавов НАН Украины разработан, изготовлен и успешно эксплуатируется плавильно - заливочный комплекс для получения высококачественных слитков из сплавов систем Al-Mg, Al-Mg-Zn, Al-Mg-Zn-Cu, Al-Li-Mg-Cu, состоящий из вакуумного МГД-миксера и машины полунепрерывного литья. Высокое качество слитков обеспечивают следующие технические решения:

- постоянное электромагнитное перемешивание на всех его этапах приготовления позволяет достигать высокой степени усвоения легирующих и модифицирующих элементов и равномерности распределения их в расплаве;