Впливом вмісту титану в сталі на формування осьової пористості й хімічної неоднорідності можна знехтувати, оскільки в паспортах його вміст відмінний від нуля зустрічається лише у двох плавках.

Перелік посилань

- 1. *Смірнов О.М.* Безперервне розливання сталі [Підручник] / О.М. Смірнов, С.В. Куберський, Є.В. Штепан. Алчевськ: ДонДТУ, 2011. 518 с.
- 2. *Ботников С.А.* Современный атлас дефектов непрерывнолитой заготовки и причины возникновения прорывов кристаллизующейся корочки металла / С.А. Ботников. Волгоград, 2011. 97 с.

УДК 669.245.018.044:620.193.53

А. А. Глотка, С. В. Гайдук

Национальный университет «Запорожская политехника», г. Запорожье

РАСПРЕДЕЛЕНИЕ ЭЛЕМЕНТОВ В КАРБИДАХ НИКЕЛЕВЫХ СПЛАВОВ РАВНО-ОСНОЙ КРИСТАЛЛИЗАЦИИ

По мере совершенствования системы легирования жаропрочных никелевых сплавов усложняется их микроструктура и изменяется фазовый состав. Кроме основных фаз: γ - твердого раствора, высокодисперсной γ' - фазы, выделяющейся из γ - твердого раствора, и карбидов типа МС, выделяются избыточные фазы, представляющие собой эвтектику γ + γ' , карбиды других типов ($M_{23}C_6$, Me_6C), фазы на основе твердого раствора одного из элементов: (хром, кобальт) σ - фаза, (вольфрам, молибден) μ - фаза и т. д [1, 2]

В системе многокомпонентного легирования (Ni-13,5Cr-5Co-3,4Al-4,8Ti-7,3W-0,8Mo-0,015B-0,12C), что соответствует среднемарочному сплава ЗМИ-ЗУ [9], диапазон варьирования элементами был выбран из соображений максимального и минимального количества элемента, вводимого в жаропрочные никелевые сплавы (ЖНС). Таким образом, для исследования были выбраны карбидообразующие элементы в следующих диапазонах легирования: углерод (0,02-0,2); титан (1-6); ниобий (0,1-4); тантал (0,5-12); гафний (0,1-2,5) % по массе.

Титан присутствует не только в составе упрочняющей γ' фазы, но и является сильным карбидообразующим элементом, на основе которого формируются карбиды типа МС. В исследуемой системе легирования первичный карбид на основе титана содержит и такие элементы как вольфрам, молибден и хром. Как показали исследования, содержание вольфрама находится в пределах (25-40)%, в то время как молибдена и хрома в пределах (0,15-0,35)% и (0,45-1,45)% по массе, соответственно. При этом установлено, что титан оказывает сложное влияние не только на температуру растворения (или выделения) первичного карбида МС, но и на аналогичную температуру образования вторичного карбида $M_{23}C_6$.

с увеличением содержания ниобия в сплаве до 1,5% по массе возрастает его концентрация в первичном карбиде и превышает концентрацию вольфрама. А при 2,5% по массе карбид изменяет свою основу и карбид становится на основе ниобия. Так же, при 2,5% масс ниобия наблюдаются изменения во вторичных карбидах, до указанной концентрации ниобия, карбиды содержали, % по массе: 73,8Сг; 13,7Мо; 5,6W; 1,76Ni и 0,71Со и практически эти показатели не изменялись. Однако, выше 2,5% Nb концентрация элементов в карбидах заметно изменилась, % по массе: 88,7Сг; 2,6Мо; 1,5W; 0,87Ni и 0,8Со и заметно не менялась с ростом содержания ниобия. Изменение концентраций элементов приводит к выделению ТПУ фазы (Рфазы) и приближению состава вторичного карбида к монокарбиду типа $Cr_{23}C_6$, который имеет более низкую термодинамическую стабильность.

Увеличение содержания тантала в сплаве до 4% по массе приводит к образованию ТПУ фаз (типа P- фазы), что может оказывать негативное влияние на механические свойства. При содержании 4% тантала проходит изменение стехиометрии вторичного карбида подобно тому, как это проходит при легировании ниобием - вторичный карбид стремится к образованию монокарбида на основе хрома $Cr_{23}C_6$. При содержании в сплаве тантала 8% по массе возможно выделение σ - фазы, что также оказывает негативное влияние на структурную неоднородность и механические характеристики сплава, особенно пластичность.

Таким образом, расчетные результаты, полученные CALPHAD-методом по определению типа, количества и химического состава карбидов показали хорошую сходимость и согласованность, в сравнении с экспериментальными данными, полученными методом электронной микроскопии.

Список литературы

- 1. *Каблов, Е.Н.* Литейные жаропрочные сплавы. Эффект С. Т. Кишкина : науч.-техн. сб. : к 100-летию со дня рождения С. Т. Кишкина / Под общ. ред.Е.Н. Каблова. М. : Наука, 2006. –272 с.
- 2. *Логунов, А.В.* Температуры растворения упрочняющих фаз в жаропрочных никелевых сплавах / А.В. Логунов, Н.В. Петрушин, И.М. Хацинская // Металловедение и термическая обработка металлов. 1977. № 6. С. 67-68.

УДК 621.039

А. В. Глушко

Національний Технічний Університет «Харківський Політехнічний Інститут», Харків

ВИКОРИСТАННЯ СТАЛІ 25Х2НМФА ПРИ ВИГОТОВЛЕННІ РОТОРІВ ПАРОВИХ ТУРБІН АЕС

Сучасні вимоги до роботи Об'єднаної електроенергетичної системи (ОЕС) України на сьогоднішній день є досить високими. Надійність роботи та збільшення ресурсу експлуатації є пріоритетними задачами ОЕС.

АЕС, як одні з основних генеруючих потужностей ОЕС України, представлені чотирма АЕС (15 енергоблоків, з яких 13 — потужністю по 1 000 МВт і 2 — потужністю 415 та 420 МВт) [1].

При цьому термін напрацювання більшості енергоблоків вже перевищує свій парковий ресурс. Тому пріоритетним напрямком роботи є збільшення ресурсу експлуатації роботи енергоблоків, у тому числі і складових елементів енергоблоків.

Ротори парових турбін великої потужності є невід'ємним елементом енергоблоків АЕС. Покращення якісних характеристик структури металу зварних з'єднань роторів парових турбін великої потужності, які працюють на АЕС, є однією з головних причин для збільшення їх експлуатаційних характеристик. Вивчення структурного стану зварних з'єднань зі сталі 25Х2НМФА, яка використовується при виготовленні роторів парових турбін, є актуальною та важливою задачею. Сталь 25Х2НМФ — це конструкційна високоякісна хромонікельмолібденова сталь, яка застосовується для виготовлення зварних роторів турбін. Заготовки зварних роторів з цієї сталі підляга-