ТЫНДА К.А., ИВАШКО А.В., проф.

ПРОГРАММНЫЕ СРЕДСТВА СЖАТИЯ БИОМЕДИЦИНСКИХ СИГНАЛОВ МЕТОДОМ ЛИНЕЙНОГО ПРЕДСКАЗАНИЯ

Механизм данного метода наглядно можно представить на примере сжатия речевого сигнала. Суть кодирования сигналов на основе метода линейного предсказания заключается в том, что по линии связи передаются не параметры речевого сигнала, как такового, а параметры некоторого фильтра, в известном смысле эквивалентного сигналу, и параметры сигнала возбуждения этого фильтра. В качестве такого фильтра используется фильтр линейного предсказания. Задача кодирования заключается параметров фильтра и параметров сигнала возбуждения, задача декодирования – в пропускании сигнала возбуждения через фильтр, на выходе которого получается восстановленный сигнал. В качестве сигнала возбуждения в простейшем случае может выступать остаток предсказания, при получаемый пропускании сегмента через фильтр линейного предсказания с параметрами, полученными из оценки для данного сегмента.

Сигнал представляется как результат прохождения белого шума $^{\mathcal{E}_i}$ с нулевым средним, дисперсией $^{D_{\mathcal{E}}}$ и средним квадратическим отклонением $^{\sigma_{\mathcal{E}}}$ через цифровой фильтр. Спектр белого шума, поступающего на вход гипотетического фильтра, равномерен во всей полосе частот от нуля до $^{0.5f_{\phi}}$ и имеет в этой полосе постоянное значение $^{\sigma_{\mathcal{E}}}$. Спектр сигнала $^{X(j\omega)}$ равен произведению спектра шума $^{E(j\omega)}$ и частотной характеристики фильтра $^{H(j\omega)}$: $^{X(j\omega)}=E(j\omega)H(j\omega)$. Поскольку спектр белого шума $^{E(j\omega)}$ постоянен, то спектр $^{X(j\omega)}$ совпадает с ЧХ фильтра $^{H(j\omega)}$ с точностью до постоянного множителя и, восстановив каким-либо образом структуру и коэффициенты фильтра, можно рассчитать его частотную характеристику и спектр сигнала $^{X(j\omega)}$

Метод линейного предсказания заключается в том, что очередная выборка речевого сигнала x_i с некоторой степенью точности предсказывается линейной комбинацией M предшествующих выборок: $x_i = b_1 x_{i-1} + b_2 x_{i-2} + ... + b_{M-1} x_{i-M+1} + b_M x_{i-M} + \varepsilon_i$, где b_i – коэффициенты линейного предсказания, M – порядок фильтра. Разность между истинным и

предсказанным значениями выборки определяет ошибку предсказания (остаток предсказания): $x_i - b_1 x_{i-1} - b_2 x_{i-2} - \dots - b_{M-1} x_{i-M+1} - b_M x_{i-M} - \varepsilon_i$. В результате z-преобразования этого разностного уравнения получаем: $1 - b_1 z^{-1} - b_2 z^{-2} - \dots - b_{M-1} z^{-(M-1)} - b_M z^{-M}$, где функция A(z): $A(z) = 1 - b_1 z^{-1} - b_2 z^{-2} - \dots - b_{M-1} z^{-(M-1)} - b_M z^{-M}$ интерпретируется как передаточная характеристика некоторого фильтра (инверсного фильтра или фильтра-анализатора), частотная характеристика которого обратна по отношению к частотной характеристике исходного сигнала. При его подаче на вход инверсного фильтра на выходе фильтра получается сигнал возбуждения, подобный (с точностью до ошибок, определяемых конечностью порядка предсказания М и погрешностью оценки коэффициентов предсказания) сигналу возбуждения на входе фильтра.

Значения коэффициентов предсказания находятся из условия минимизации среднеквадратического значения остатка предсказания на интервале сегмента. После несложных вычислений в итоге получим систему уравнений, коэффициентами в которой являются оценки автокорреляционной функции сигнала, вычисленные по формуле:

 $R(i) = \frac{1}{N-1} \sum_{k=0}^{N-i-1} x_k x_{k+i}$. Разрешив систему относительно $b_1, b_2, ..., b_M$, можно восстановить структуру и коэффициенты фильтра, а по коэффициентам — частотные характеристики.

$$\begin{cases} b_1 R_{xx}(0) + b_2 R_{xx}(-1) + \dots + b_M R_{xx}(-M+1) = R_{xx}(1) \\ b_1 R_{xx}(1) + b_2 R_{xx}(0) + \dots + b_M R_{xx}(-M+2) = R_{xx}(2) \\ \dots \\ b_1 R_{xx}(M-2) + b_2 R_{xx}(M-3) + \dots + b_M R_{xx}(-1) = R_{xx}(M-1) \\ b_1 R_{xx}(M-1) + b_2 R_{xx}(M-2) + \dots + b_M R_{xx}(0) = R_{xx}(M) \end{cases}$$

Математические операции поиска коэффициентов фильтра реализованы в виде функции в системе Matlab, а также в виде программы, написанной на языке программирования Delphi.

Данный метод также может применяться для сжатия ЭКГ-сигналов (например, в системе холтеровского мониторирования).

Список литературы: 1. *Ивашко А.В.* Методы и алгоритмы цифровой обработки сигналов. Учеб. пособие – Харьков: HTV «ХПИ» - 2005 – 240с. – Русск. яз.; **2.** *Дьяконов В.* – Matlab 6. Учебный курс. СПб., Питер, 2001. – 592с., ил.