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A Lagrange multipliers formulation for dynamical frictionless thermo-
elastic contact problem is considered. Thermal deformations and 
dependency of contact thermal resistance on contact pressure are 
assumed to be the only two coupling effects. Application of standard 
Newmark method to the problem may lead to spurious numerical 
oscillations of contact pressures and heat fluxes, inaccurate or divergent 
solutions. A modification of the Newmark method is proposed where 
contact contributions are integrated non-monolithically with backward 
Euler. Elimination of spurious numerical oscillations is shown in a 
numerical example. 

 
 

INTRODUCTION  
Dynamical contact problems arise in many practical applications such as turbines, combustion 

engines and manufacturing. In many cases both mechanical and thermal loads play important role. If 
contact area and pressure change during the process, then contact heat fluxes vary strongly. The 
contact heat fluxes influence the temperature distribution and, consequently, thermal deformations, 
which may cause the change of contact area. Thus, such thermo-mechanical contact problem is 
intrinsically coupled and non-linear. 

One may formulate these contact conditions in a weak form using Lagrange multipliers. Then 
independent fields of contact pressure and heat fluxes are introduced on the contact interface. Contact 
pressures play role of Lagrange multipliers for impenetration condition. Heat fluxes satisfy energy 
balance equations (for details see [1,2]). Spacial descritization of the weak form with FE reduces 
problem to a system of differential-algebraic equations as follows  
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with  uuM  and TTM  are matrices of mass and heat capacities; intf  and intr are internal force and heat 
source vectors; vectors  extf and extr  are external loads; vectors Tdλ ,,  are unknown contact 
pressures, displacements and temperatures and cf , cr and g  are contact forces, heat fluxes and 
constraints. 

Initial conditions are specified for displacements, velocities and temperatures. Moreover, initial 
conditions should not violate contact conditions and be consistent with active constraints, which also 
imply additional constraints on initial velocities. Initial Lagrange multipliers are recovered from 
equilibrium [1,3]. Altogether they read as follows 
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In case of thermo-hyperelastic material, velocities d  do not explicitly enter intf  term. Thus 

system finally reduces to 
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Note, the equations (1.3-5) are nothing else but Karush-Kuhn-Tucker conditions and equation 

(1.6) means heat insulation in case of positive gap, i.e. contact heat conductance cc qTh //1 ∆=  
vanishes [4]. Actually, the main challenge arises from non-smooth subsidiary conditions that are 
illustrated of Fig.1. 
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Fig. 1 Pressure/gap and contact conductance/gap relations  

 
Rigorous analysis of the systems shows that it is a DAE with differential index 3, i.e. 3 

additional differentiations are necessary to transform it into an explicit first-order system (for details 
see [3]). Such systems are known for number instabilities and numerical problems. 

Improper time integration of the system might lead to artificial numerical oscillations of 
Lagrange multipliers [1-5]. This increases numerical cost and spoils accuracy. In some pathological 
cases divergent results may be obtained [6]. 

The most efficient way to repair such defect is to modify an existing time integration scheme 
with special treatment of the constraints. On the one hand ordinary users are familiar with such 
methods. On the other hand only few coding is necessary to get valuable results. Newmark method 
gives such opportunity. As backward methods are generally known for their stability, one can modify 
predictor to treat contact constraints using backward Euler (due to ideas of Lane et. al. [7]). The other 
idea is to include an additional projector on the predictor step. Standard Newmark predictor leads to 
strong violation of the constraints, which means expensive correction phase [5]. Both methods are 
reported to be successful in elimination of artificial oscillations for mechanical problems. However, 
they introduce artificial damping and generally are not energy preserving [5,7]. 

Here we present modification of the predictor step with backward Euler integration of the 
contact contributions that is extended for thermo-elastic problem. A numerical example illustrates 
efficiency of the proposed approach. 
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1.  Standard Newmark scheme for thermo-elastic contact problem   

As a starting point we use standard Newmark method (see [2,5,7]). It assumes following 
integration rule for the variables, predictor and corrector  
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The corrector system of equations (6) is implicit, i.e. 1+nd , 1+nT  and 1+nλ enters both left and 

right hand side of equation. It is also a non-linear system, which means it should be solved iteratively, 
i.e. with Newton-Raphson method. A consistent with (6) tangent reads as follows 
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2.  Modified predictor for thermo-elastic contact problem   
Instead of applying monolithic integration rule for external, internal, inertial and contact forces, 

it is suggested to integrate cf  and cr non-monolithically with backward Euler. It doesn’t change 
update rule (4), because contact terms do not explicitly enter it. The standard predictor (5) uses 
contact contributions on the previous step nc,f  and nc,r . Now we exclude them from the predictor. 

Contribution of new values  1, +ncf  and 1, +ncr  in corrector is calculated as 1,
12

+
−∆ ncuut fM   and 

1,
1

+
−∆ ncTTt rM . Thus consistent expressions for predictor, corrector and algorithmic tangent read 
 



 
500 

( ) ( )
( ) ( )








−−∆+=

−−
∆

+∆+=

−
+

−
+

nnextTTnn

nnextuunnn

t

tt

int,,
1

1

int,,
1

2

1

1~
21

2
~

rrMTT

ffMddd

γ

β

  

 

(8) 

 
( )
( )













=
=≤≥

−−∆+=

−−∆+=

++++

++++

+++
−

++

+++
−

++

0dgTdλr
0λdg0λ0dg

rrrMTT

fffMdd

)(),,(
)(,,)(

/~
/~

1111

1111

1,1int,1,
1

11

1,1int,1,
12

11

nnnnc

nnnn

ncnnextTTnn

ncnnextuunn

t

t

γγ

ββ

  
 

(9) 

 























++
∆

+

++
∆

=

00G

KKKMKD

GKλHKM

A γγ
γ

γ

ββ
β

λ //1/

//1
2

T
c
TTTTTT

c
TuTu

T
uTuuuu

t

t

 

(10) 

 
The advantages of the proposed modification are straightforward implementation and consistent 

coupled time integration. The disadvantages are two additional matrix inversions in predictor step, 
zeroes on diagonal of algorithmic tangent and lack of its symmetry. If we use lumped matrixes the 
overhead of matrix inversions is neglectable [5]. Usage of dual Lagrange multipliers allows us to 
eliminate zeroes on diagonal [1]. But, unfortunately, symmetric algorithmic tangent cannot be 
achieved within proposed approach. 

 
3.  Numerical example   
Proposed algorithm was initially implemented and tested in computer algebra system Maple. 

As a numerical example we chose a problem of dynamical snap-through of a shallow arch. Despite 
simplicity of the example, it shows spurious oscillation of contact resultants, large sliding contact with 
high degree of nonlinearity and sufficient coupling between fields.  

Two thermo-hyperelastic truss elements are used (St. Venant-Kirchhoff material [1]). Abrupt 
force F  is applied in vertical direction. In addition the middle node is constrained to slide along rigid 
circle as shown on Fig.2. The temperature of the obstacle was defined as function of vertical 
displacement K )100372( yc  dT −= , which makes term 0K ≠c

Tu .  
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Fig.2 Setup of numerical example 
 
   Both standard and modified schemes were tested with default parameters for Newmark 
25.0=β , 5.0=γ ,  and constant time step .0005.0 s=∆t

 
Lagrange multipliers over time are shown 

on Fig.3. 
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Fig.3. Lagrange multipliers from standard (upper) vs. modified (below) scheme 

 
More pronounce difference shows up in temperature at middle node. Overestimation of contact 

force leads to overestimation of contact heat conductance and contact heat fluxes. Therefore the 
standard Newmark scheme fails to predict correctly temperatures (Fig.4) and should not be used for 
this problem together with Lagrange multipliers formulation (however, we did not study behavior of 
standard scheme together with penalty formulation). 

 

 
Fig.4. Temperature at middle node (°C) over time 
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CONCLUSIONS 
Standard Newmark scheme may fail for dynamical thermo-elastic contact problem. 

Modification of predictor/corrector of Newmark method is proposed. It is shown that this 
modification eliminates oscillation of Lagrange multipliers. In the future we plan to implement the 
method to two-body frictional contact in 3D, study the question whether it is necessary to do an 
additional projection to admissible set during predictor step. 
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