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In this paper the condition of « -level stability of linear fuzzy hybrid

automaton is converted to a numerical algorithm. A computational
procedure that is a hybrid of the Lagrange method and the method of
projection of generalized anti-gradient is proposed.

INTRODUCTION

The most common method for investigation of stability of hybrid automata is the method of the
Lyapunov functions. General theory of stability of hybrid automata is rather complicated, since the
Lyapunov functions needed for investigation of stability should satisfy some complex conditions. For
hybrid automata that contain only linear subsystems two approaches are frequently used.

The first of them is based on construction of the Lyapunov quadratic form common for all
subsystems. For hybrid automata that have more than two local states there is a theorem: a sufficient
condition of existence of the common Lyapunov function is an existence of stable convex

N
combination of matrices A, i.e. there are positive ¢, , where ) o; =1, such that matrix A=) a; A
i i=0
isstable[1].

When N =2, this condition is also necessary. But the determination of the convex combination
of matrices A satisfying this condition is a combinatorial problem with non-linear polynomial
complexity. Moreover, there is a large class of systems that don't satisfy this condition, but a
stabilizing sequence of switchings exists, and hybrid automaton is stable.

It's shown in [2] that if positive-definite matrices R exist, i=1.N such as

Z (A'R +R A) >0, the common quadratic Lyapunov function doesn't exist.

Another approach is a construction of own Lyapunov function for each local state of automaton
[3]. This approach assumes a finding of N positive-definite matrices H, , each of them satisfies its
own Lyapunov equation, one symmetric matrix and 2N matrices with non-negative elements. These
matrices should satisfy a complex system of matrix equations.

In this paper we suggest a constructive approach to check the conditions of stability of linear
hybrid automaton. For this we use methods of operational research.

1. OBTAINING AN OPTIMIZATION PROBLEM
We investigate stability of afuzzy linear hybrid automaton
HA=(Q,y, A B,Init, Inv,Jump), D

where
Q={1..N} isaset of local states (discrete variable),

y e R" isacontinuous variable, changing according to law
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y(t) = y(t) + [ Ay(s)ds+ [ By(s)dw(s, )

1 tI

where W(s,X), xe X is a process of fuzzy roaming with distribution s(u) = plou?) [4],
(X,2%,P,N) isaPN space[5]

Init=1Invc{(q,y):Gy=0},

a sate of switching (Jump) is cyclic (1-2—...—»N-—1), continuous
(y(t +0,x) = y(t; - 0,x)) and isimplemented on hyperplane y=U,z, ze R™.

Definition 1. Funnel y(Y,,t,x) of fuzzy dynamical system y(y,,t,x) (not necessarily hybrid
automaton) is called « -level stable, if for al x, € X for which P({x.,}) >« for every >0 exists
5(¢) suchthat |y, — Yo| < & implies |y(yo,t, %) = Y(Vo.t, %) < €.

Theorem 1 (about the piecewise-quadratic s-function). A linear hybrid automaton (1) is given.
If positive-definite matrices H, (sized nxn) exist such that

8y = maxx" (AjHg + HoA)x+[BIHg + HeBylyo (@)o <0
X-|9X=l

and for every switching gq— (kmodN)+1=r matrix Ug(H, —H)U
semidefinite, then x =0 isanasymptotically « -level stable stationary point.

So, to check these conditions, we should create an algorithm to obtain matrices H, that

q IS negative

maximally satisfy the theorem. In other words, we should build such matrices H, that minimize
values of a,- If this minimal value is less than zero, the conditions of the theorem are not fulfilled and

we cannot investigate stability of the automaton using the method of the Lyapunov functions. If that
valueis less than zero, the trivial stationary point is asymptotically stable.
To check stability, we should solve the optimization problem

,(H) = _ yggaézzo(yT(AIHq +HoA)Y+ 2 (BIH, + Hqu)Z\/(p‘l(a)a)?min @
y? ()5:1,’ quz=1 q
ge

with conditions: matrices H, are positive-definite, for al switchings q—r matrices
UJ(Hr —H,)U, are seminegative-definite, and elements of matrices H ={H,,qe Q} arelocated in
some compact domain D that envelops 0. For simplicity of denotes

W(H,Y,2) = YT (ATH, + H A+ 2 (BTH, + H B, Jey/p (a)o
L =D A {H : Ay (Hg) = 0; A (U (H, —H)U,) <0}

Lemma 1. If function w(H,y): R™xR™ — R is continuous and K is a compact on Rz,
then function ®(H) = rpeiipy/(H,y) is continuous.

Corollary. Minimum and maximum eigenvalues are continuously dependent on coefficients of
H.

Theorem 2. Set Ly = {H : Ayn (Hg) > 0 A (UT (H, — Hy)U,,) <0} is a convex closed cone,

Corollary. L, iscompact.

Theorem 3. Optimization problem (1) has a solution.
Proof. For this we should prove three facts.

1. Function @, (H) iscontinuous;

2. Thereisat least onepoint H € L;;
3. Domain L, is compact.
Continuity.

®,(H)=max  max (yT(A;Hq +H A)Y+ 7 (BIH, + Hqu)Zq/(o_l(a)aj

geQ Gyy=0, G20
y'y=1,7'z=1
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Function qugggézzo(yT (AjH +H A Y+ 2" (B;Hq +H,B, )zw/go‘l(a)aj is  continuous
yTy=1,7"z=1
according to Lemma 1. That's why ®,(H), that is a minimum of finite number of continuous
functions, is continuous.
Existence. For sufficiently small 7, point H ={H, =&, ={h¢ =5,}} is located inside L.
Indeed, for this H limitations H € D, A, (H, —H,)=0 and 4.;,(H,)>0.

Compactness. Proved above.

These three conditions, according to the Weierstrass theorem, imply existence of solution of the
optimization problem.

Theorem 4. Function ®,(H) is convex.

Proof. For this, it’s enough to prove convexity of function

®I(H)=  max (yT(A;Hq +H A)Y+ 7" (BIH, + Hqu)Zw/(p_l(a)a)

Gyy20, Ggz>0
y'y=1,7'z=1

So, given H' and H”, denote H = )H'+ (1—»)H".
®f(H) is essentially maxL(H,y,z), where L is a linear functional of H. Then
Y.z

@ (aH, + pH,) <D (aH,) + P (BH,) = a®] (H,) + pPI(H,), when «,5>0. So, ®I(H) is
convex.

2. METHOD OF NUMERICAL SOLUTION
As it was said above, there are three limitations for the coefficients hil: H e D, 4,;,(H,) =0,

imax(U;(Hr -Hy)U,)<0. For implementation of the first condition we can use projection of

gradient, if we pick specially-shaped D. For the second — the gradient is projected as
Hg =Hq + 20 (E,) - And for the third oneit’s impossible to project the gradient. So, we use a hybrid

of Lagrange method and gradient projection method. We construct next Lagrange function:
O(H) =@, (H)+ 207 0% (H)
4reQ

Where ©F (H) = 4y, (U] (H, ~Hg)U,) . Let us assume D = | <1

Definition 2. Generalized gradient of function @(x) is a vector V*(x) such that
D(2)-D(X) > (V*(X),z—X).

Theorem 5. The following equation is a generalized gradient of ®,(H):

Vfbl(H) = {h? = yg(ATAij +A;A)Yo + Zg (ATAij +A4; A)Zo}
where y, and z, are n-dimensional vectors that realize maximum of function ¥; A; isa

matrix nxn that has one unit element on intersection of i and j.
The only remaining thing is finding the generalized gradient of the function

q)kl(H)zimax(UI;r(Hﬂ_Hk)Uk)
0, q=k,/
Theorem 6. Equation V', (H)={h}, where h? =<-ujU AU, u,; q=Kk; u, isavector of
dimension n-1 and norm 1 that realizes maximum of HuTUJ(H[—Hk)UkuH, is a generalized

ke
gradient of function ® (H).
Proof.
O (Hy) = @ (Hg) = A (Uit (Hy = H)U ) = A (U (Ho —Hg)Uy)
The matrix U| (H, — H;)U, is positive-definite, so one has

Amex U (H1 _H:{()Uk):m‘a:i(uTU;—(Hﬂ —H U
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Thus, the following holds
(I’kl(Hl)—‘I)k[(Ho) = UIUI(Hf - H1|<)Uku1_ugUI(Hé - Hcl)()Uka

where u, :arngcalquU,I(Hé ~HU,u, u, isthe samefor matrix H, .
uj=1

This equation may be rewritten as

O (Hy) =@ (Hg) =/ Uy (Hy — Hi YUty —ugUy (Hy —Hy)U U

+UUT[(HY = HE) - (Hg - HEO Do,
Because maximum for matrix H, holdsfor vector u,,

U Uy (Hy —HOU U —ugUyg (Hy —H U, U, >0
Then
DY (Hy) = (Ho) > WU [(H] — HE) - (Hg —HE D,
We get a definition of generalized gradient:
CDM(Hl)_ch((Ho)Z(V* (Ho)'Hl_Ho)

(I)k('

2.1 Movement down the “canyon”
Sometimes a situation happens when on some step a maximum of function ¥ holds

simultaneously for two different q: q=q, and q=gq,. We can call this situation a “canyon’. Target

function in the “canyon” is continuous, but it has a discontinuous derivative, so in general case the
generalized gradient may not exist. For simplicity let us rewrite our problem as
®(H)=max¥(H,y,q) > min
y.q

One denotes: ®(H,q) =max¥(H,y,q) .
y

Calculating a generalized gradient of the function ®(H), in reality we calculate a generalized
gradient of all ®(H,q) . By definition of a generalized gradient, it defines a semi-space Q, for which
for every H, € Q (close enough to H ) holds ®(H,,q) < ®(H,q) . If we intersect the subspaces that
correspond to q=0q, and gq=gq;, we obtain an infinite pyramid that corresponds to all possible

movements from current point H .
Number of “blocking” q is aways less than number of free variablesin H . That’s why the set

of possible direction is non-empty. We can find at least one element of intersection of mentioned
semi-spaces from the system <V? , H1> <0,ie{03.

The target function is uniform (®(kH) = k®d(H) ). That’s why we treat the solution as optimal,
when on the next step we are on the boundary of D, and because of “canyon” limitation we cannot
move without moving beyond ‘hﬂ <1.

2.2 Computational procedure
First treat all variables of matrix H as*unlocked’. Repest the procedure:

1. Compute V (H,0) . If the maximum holds for several qe Q, compute generalized gradient
for all such g and find a vector that isin the intersection of subspaces.
2. For all “locked” variables: if the corresponding coordinate of generalized anti-gradient V

leads inside cube ‘hﬂ <1, “unlock” the variable. If not, replace the coordinate of anti-gradient with
zero. If after these limitations the anti-gradient turns to zero, STOP: no solution found.

3. Find p, for which H - pV doesn't move beyond ‘h‘f‘sl. If ®(H-pV)<®d(H), st
H :=H - pV and “lock” the coordinate that became a limitation.

4. If ®(H-pV)>d(H), find optimal p according to rules of gradient method. Assign:
H=H-pV.
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