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ABSTRACT 

It is presented a dynamically coupled dry friction model describing the 
sliding of the heavy rotating disk along the rough plane. The procedure of 
the models constructing is based on the well known results from the 
theory of elasticity that tangent stresses lead to shift in the symmetric 
diagram of the normal contact stresses in the direction of the 
instantaneous sliding velocity. To use the theory of elasticity results in 
the dynamics problems, a simple linear approximation of symmetric 
distribution of normal contact stresses is proposed. The subsequent 
integration on the spot contact of the net vector and torque differentials 
yields the exact couple integral model of the sliding and spinning friction. 
To escape the double integrals calculation in the motion equations, the 
exact integral expressions are replaced by appropriate Pade expansions. 
It is shown that the distortion of the symmetry in the distribution of normal 
contact stresses in the case of circular contact sites results in the 
appearance of the friction force component directed along the normal 
to the trajectory of the mass center of the rubbed solids and, 
consequently, the disk mass center trajectory is declined from the 
straight line.. 

 
 

INTRODUCTION  
The sliding of the heavy rotating disk along the incline plane in the presence of dry friction is 

one of the classical models in theoretical mechanics. It has been thoroughly studied by numerous 
authors. In a majority of publications, the authors have used the Coulomb dry friction model, where 
the force at the point of contact is assumed to be directed opposite to the relative sliding velocity 
and be independent of its modulus. But there are numerous experimental data testifying that these 
assumptions do not agree with the real situation in which the interacting bodies simultaneously 
participate in translation and rotation. 

One of the first models describing the relation between the sliding friction and the whirling 
friction in the case of non-point contact between the moving bodies was proposed by in [1]. A 
principally new development of the theory was given by in [2], where exact analytic expressions for 
the resultant vector and the frictional moment for circular contact sites were obtained under the 
assumption that the distribution of contact stresses in the contact spot obeys the Hertz law. In [2], 
to apply the obtained dependencies to problems of dynamics, the linear-fractional Pade 
approximations of these dependencies were constructed. The developed in [2] theory was used 
in [3] to study the dynamics of a homogeneous circular disk sliding with rotation on a plane. Under 
the assumption that the distribution of contact stresses obeys the Galin law, exact analytic 
expressions for the resultant vector and the frictional moment were obtained and their linear-
fractional Pade´ approximations were constructed. 

The convenience in the use of the Pade´ approximations, which permit describing the 
effects of combined dry frictions for the entire range of angular and linear velocities, allowed one 
to construct principally new the two-dimensional coupled models of the sliding and whirling 
friction the basis of these approximations [4]. All these models were constructed in the 
assumption that, in the case of circular contact sites, the distributions of normal contact stresses 
depend only on the position vector with origin at the contact spot center. But, it is known [5] that  
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in the case of the rigid solids sliding it is appears tangent stresses that leads to shifting in the 
symmetric diagram of the normal contact stresses in the direction of the instantaneous sliding 
velocity. Proposed below models permit to use the theory of elasticity results in the dynamics 
problems. 

 
1.  BASIC RELATIONSHIPS   

All described in introduction models were constructed in the assumption that, in the case of 
circular contact sites, the distributions of normal contact stresses depend only on the position 
vector with origin at the contact spot center. But, it is known [5] that in the case of the rigid 
solids sliding it is appears a tangent stress that leads to shifting in the symmetric diagram of the 
normal contact stresses in the direction of the instantaneous sliding velocity v  (Fig. 1).  
 

 
Fig. 1 Kinematics inside the contact spot letters 

 
To use the theory of elasticity results in the dynamics problems, a simple linear approximation 

of the normal contact stresses distribution is proposed: 
 

 ( )0( , ) ( , ) 1x y x y kx Rσ σ= + .       (1) 
 
Typical behavior of the function (1) (red line) is presented on the Fig. 2 in the supposition that 

symmetric distribution 0 ( , )x yσ  (blue line) of the normal contact stresses in the absence of sliding is 
describing by Galin law: 

 ( ) 1
2 2 2 2 2

0 ( , ) 2 1x y N R x R y Rσ π
−

= − −        (2) 

 

 
Fig. 2 Distribution of the normal contact stresses  

 
 
where N  - normal reaction, R  - disk radius. 



104 

To calculate coefficient k  in the formula (1) it is used the condition of equality of the external 
force F  torque to the normal reaction force N  torque which is appears from the shifting of the center 
of gravity of the contact spot in the direction of sliding on the value s  (Fig.2): 

 
 ,Fh Ns N mg= =        (3) 

 
where m  - mass of disk and h  - distance from disk center mass to the plane of sliding (Fig. 2). On the 
other hand the shifting s  of the disk gravity center relatively of the contact spot center can be defined 
by the following formula: 

                                ( , ) ( , )
G G

s x x y dxdy x y dxdyσ σ= ∫∫ ∫∫                   (4) 

  
Substitution of the functions (1) and (2) to the (4) yelds: / 3s kR= . Equalization values s  

calculated from the formulas (3) and (4) gives  
 
                                             3 ( )k hF NR=                                    (5) 

 
2.  COUPLED MODELS OF THE SLIDING AND SPINNING FRICTION 

The combined model of sliding and rolling friction is constructed for circular contact sites 
under the assumption that the Coulomb law in differential form holds for the small surface 
element dS  in the interior of the contact spot, according to which the differentials of the 
resultant vector dF  and the moment of friction CdM  with respect to the disk center are 
determined by the formulas:  

 

              
( ) ( )3 3

1 2 1 21 , 1 ,

( , ), ( , )

Cd f dS dM f dS

v y x x y

σ µ µ σ µ µ

ω ω

×
= − + − = − + −

= − =

V r VF V V V V
V V

V r
       (6) 

 
where f  is the coefficient of friction, ( , )x y=r  is the position vector of an elemental area in the 
interior of the contact spot with respect to its center (Fig. 1), ω  is the angular velocity of 
rotation of the contact spot center, but 1µ  and 2µ  are the coefficients which can be defined in 
practice from experiments. 

To obtain the resultant vector and the moment of friction, it is necessary to integrate the 
expressions (6) over the contact spot. The obtained dependencies, where F



 and F⊥  denote the 
respective components of the resultant vector directed along the tangent and the normal to the 
trajectory of motion, present an exact combined integral model of sliding and spinning friction 
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  (7) 

 
After introducing dimensionless variables: ˆ ˆ,x xR y yR= =  and 2ˆ ˆ ˆ ˆ ˆ( , ) ( , )x y x y N Rσ σ=  and 

under the assumption that the distribution of normal contact stresses without spinning has the 
central symmetry 0 ( , ) ( )x y rσ σ= , it is convenient to calculate the modulus of integrals (8) in the 
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polar coordinates: cos , sin , [0,1], [0,2 ]x r y r rϕ ϕ ϕ π= = ∈ ∈  (Fig. 1) in which the functions (7) 
take the form 
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    (8) 

 
where the “hat” symbol is omitted for brevity, but 2( ) 1 / (2 1 )r rσ π= − . 

If 0k = , then model (8) fully is agree to the model, investigated in [3] and can be considered 
as the first approximation, but presented in this investigation as the second approximation. Thus, we 
have substantial approximation to the real situation in dependence on the general properties of the 
normal contact stresses distribution. The coefficient k  in formula (1), (5), (8) is defined by the 
friction force component F



 from the first expressions in the relations (7-8) and, consequently, the 
coupled integral friction model which is defined the dynamics of heavy disk on the rough plane 
under conditions of combined kinematics is 
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∫ ∫ ∫ ∫

    (9) 

 
Plot of tangent friction force component 0F F



 as function of velocity of sliding v  at the 
constant velocity of whirling 1u =  (left figure) and plot of the normal friction force component 

0( )F Fµ⊥  as function of  k v u=  (right figure) are presented on the fig. 3.: As concerned friction 
torque then, qualitatively, its behavior is the same as case of using classical form Coulomb law: there 
are only small quantitative distinctions. 

 

                
Fig. 2 Tangent and normal friction force components 

 
The expressions for the components of the resultant vector and the moment of friction in 

relations (9) have several important properties as functions of u  and v .  
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Property 1. The distortion in symmetric diagram of the normal contact stresses distribution 
results in the appearance of the resultant vector component F⊥  directed along the normal to the 
trajectory of motion. The resultant vector is not directed opposite to the velocity of sliding. 

Property 2. The distortion in the symmetric diagram of distribution of normal stresses does not 
affect to the moment CM  and the resultant vector component F



 directed along the tangent to the 
trajectory.  

Property 3. The tangent F


 and normal F⊥  components of the friction force, just as the moment 

CM , are homogeneous functions of the variables u  and v  of zero order of homogeneity and hence 
are invariant under the similarity group: 

Property 4. The expressions (9), for the moment and both components of the friction force as 
functions of u  and v  have a singularity at the point ( , ) (0,0)u v = , because they do not have any limit 
at this point with respect to both of the variables u  and v . 

Property 5. In the case of pure sliding 0u =  or spinning 0v = , the moment CM  and the 
tangential component F



 are homogeneous models corresponding to the usual Coulomb law: 
 

0 0 0(0, ) , ( ,0) , / 4CF v F fN M u M M fNRπ= ≡ = =


 
 
Property 6. In the case of pure sliding, the normal component vanishes: (0, ) 0F v⊥ = , and hence 

the friction force is directed opposite to the velocity vector; in the case of pure spinning, it is equal to 
0( ,0) , 3 (4 )F u F hf Rµ µ π⊥ = = . 

Property 7. The moment CM  and both components of the friction force F


 and F⊥  have only 
one nonzero first partial derivative (the others are zero): 
 

 0 0 0

00 0

4, ,
3 4 9

C

uu v

FM M F FF
u v v u u v

π µ
π

⊥

== =

∂∂ ∂
= = =

∂ ∂ ∂
     

 
The integral models (9) give a good description of the combined sliding and spinning friction, 

but are inconvenient to be used in problems of dynamics, because it is required to calculate multiple 
integrals in the right-hand sides of the equations of motion. This difficult procedure can be eliminated 
by replacing the exact integral expressions by the corresponding Pade approximations. The simplest 
of them is the linear-fractional approximation preserving the value at zero and at infinity of both for 
the torque 

C
M  and for the tangent force component F



. But, for the normal friction force component, 
corresponded Pade approximation, naturally, became of the second order. 
 

                      

( )

( )

2 3
0 1 2 3 1 5

0 0

3 2
0 1 2 1 1 3

0 0

0

00

1 12 (2 ) ,
3

12 ( ) 2 ,
4

1 4,
( )( ) 9

C
C

u

v

u

Mu vM M v uI u I
u mv m M u

Fv uF F v v I vu I
v au a F v

F uv FvF
u bv v au b F u

π µ µ µ

ππ µ µ µ

µ
µ π

=

=

⊥
⊥

=

∂ = + − + = ≡ + ∂ 

∂ = + − + = ≡ + ∂ 

∂
= = ≡

+ + ∂





              (10) 

 
The linear-fractional Pade´ approximations (10) preserve the values of the functions ( , )F u v



 
and ( , )CM u v  at zero, as well as their behavior and the behavior of their first derivatives at infinity. 
But model of this type cannot completely preserve the values of all first partial derivatives of these 
functions at zero. To obtain a correct description of the behavior of the first derivatives at zero, it is 
required to use the second-order Pade´ approximations, and then the coupled model of sliding and 
spinning friction takes the form 
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  (11) 

 
The second-order model (11) completely satisfies all properties 1–7 of the exact integral 

models (9). But, for the majority of the problems of dynamics, it is sufficient to use the order model 
(10). The second-order model (11) is required for a more precise qualitative analysis, for example, for 
determining the boundaries of the stagnant region and the motion stopping time. 

The approximations (10) and (11) hold for positive values of u  and v . They can be easily 
generalized to the case of arbitrary (in sign) velocities u  and v  by a formal change by absolute values 
in the denominators of the corresponding expressions. 

The use of the friction models based on the Pade´ expansions allows one to avoid calculations 
of multiple integrals over the contact spot, which significantly simplifies their use in problems of 
dynamics. Moreover, the models (10) and (11) can be considered as the phenomelogical models. To 
obtain a correct description of the combined sliding and spinning dry friction in the complete 
statement based on the models (10) and (11), it is necessary to know at most six coefficients, which 
can be determined experimentally in solving the real practical problems. 

 
CONCLUSIONS 

It is developed a dynamically coupled integral dry friction model describing the sliding of the 
heavy rotating disk along the rough plane. To escape the double integrals calculation in the motion 
equations, the exact integral expressions are replaced by appropriate Pade expansions.  

It is shown that the distortion of the symmetry in the distribution of normal contact stresses in 
the case of circular contact sites results in the appearance of the friction force component directed 
along the normal to the trajectory of the mass center of the rubbed solids and, consequently, the disk 
mass center trajectory is declined from the straight line.  
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