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ABSTRACT 

The paper presents the method of solution for cyclic creep problems of 
thin shell structures. The non-symmetrical loading and geometry are 
considered. The method of solution is based on the combination of 
asymptotic methods and averaging on the period of cyclic loading. The 
variational problem statement had been done and the FEM home-made 
code was used for numerical simulation of thin shell structures. The long-
term strength in cyclic creep conditions of the flue pipe of jet engine was 
studied numerically and the distributions of displacements, forces and 
damage parameter were obtained. 

 
 

INTRODUCTION  
 Structural thin shell elements are common in modern high-temperature technique. Operation of 
gas turbine engines, pipes, blocks of power machines and chambers of engines, heat exchangers, reac-
tor equipment etc under the joint action of the quasi-static and cyclic loading is accompanied by de-
velopment of irreversible creep strains and damage accumulation. Creep of materials under cyclic 
loading is attributed to cyclic creep, but depending on the frequency and level of loading the different 
types of creep and damage accumulation are observed. Thus, under cyclic loading with a frequency f 
≥ 1 .. 3 Hz the rate of creep does not depend on the frequency of cyclic processes, and the fracture 
occurs due to creep mechanisms. Such creep phenomenon by the classification of S.Taira and R. Oh-
tani [1] is called the dynamic creep. The number of cycles to failure in this case, as a rule, exceeds N 
= 105 cycles. In conditions of low-cycle creep, when N <105, stress periods are a lot more (seconds or 
hours). 
 In connection with the special requirements for durability and reliability of structures, the sig-
nificant results in creep-damage calculations are currently obtained [2-4]. However, the description of 
the stress-strain state of structures subjected to cyclic loading with the joint action of loads with dif-
ferent periods, remain poorly understood. 

 

The methods for estimation of an influence of mono- and 
polyharmonic loading with frequencies f ≥ 1 .. 3 Hz on creep -damage processes in plates and shells 
were discussed in [2-4]. This paper contains the problem statement and methods for solving problems 
of creep and damage accumulation in thin shells under combined cyclic loading with very different 
periods. 

1. CREEP AND DAMAGE IN THE CASE OF COMBINED CYCLIC LOADING 
 Let us  consider the combined cyclic loading σ = σ0 + σ1 + σ2 with simultaneous action of a 
constant stress σ0, slowly changing stress σ1 with the cyclic frequency f1 of the cycle period T and 
stress σ2 which is rapidly changing with the frequency f2
 In general, stress σ

 (exceeding 1 Hz). 
1 is determined by the parameters of the operating cycle (e.g. flight cycle for 

aircraft engine) with the slowly increasing and decreasing amplitude. Within such a cycle the stress in 
structural elements are usually accompanied by rapidly changing cyclical stress (e.g., caused by vibra-
tions) which leads to the development of dynamic creep. This paper discusses the combined loading, 
which activates the creep-damage mechanisms are corresponding to the combined action of the dy-
namic and low-cycle creep. 
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 Thus, the stress law for the combined cyclic loading can be written in the following form:
 

  

  (1) 
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kM =  - are the amplitude coefficients in dynamic and cyclic creep processes 

correspondently, σ0

 Let us regard the Bailey-Norton flow rule and Kachanov-Rabotnov damage equation for single 
stress state:  
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where c(t), ω(t) are irreversible creep strain and damage parameter; ω* is the damage parameter’s val-
ue in the moment of the finishing of hidden damage accumulation process t*. 
 To describe the processes of creep and damage accumulation for the combined loading the 
technique of asymptotic expansions and averaging on the period proposed in [2] was applied.  
 Asymptotic expansions on the small parameter μ = T / t allow to present the processes in two 
time scales, the ‘slow’ t and the ‘fast’ ξ, 

 
ξ= τ/T, τ= t/µ, in the following form : 

)()( 10 ξµctcc +≅ ,    ),()( 10 ξµωωω +≅ t                                           (3) 
 

where c0(t), ω0(t) are the functions which correspond to basic ‘slow’ creep and damage process as 
well as we have for ‘fast’ periodic processes the functions  c1(ξ), ω1(t,ξ). Considering that the creep 
and damage due to creep depend only on the slow time, after averaging over the period we have: 

0)(1 ≅ξc , 0)(1 ≅ξω , and we can escape from ‘fast’ time’ξ in the expansions (3).  
 In this case of cyclic combined loading the creep-damage equations are accepted as follows
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2. PROBLEM STATEMENT FOR CREEP OF CYCLICALLY LOADED THIN SHELLS  
 Let us formulate the problem by use of described in [2-4] approach, under which the original 
problem is reduced to solving two related initial-boundary problems. The first of them corresponds to 
the problem of forced vibrations of elastic shells under harmonic loading

 Let us consider a shell of revolution with arbitrary genaratrix in non-axisymmetric stress-strain 
state in creep conditions. Due to using of FEM, let us cover the surface of the shell by the set of con-
ical surfaces, using piecewise linear approximation of the generatrix. 

. The second one, which de-
scribes the creep under a static component of the load jointly with the state equations (4). These prob-
lems are connected by calculated amplitude stress cycle asymmetry coefficients.  
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 For common used designations of displacements u (u, v,w), curvature variations χ , strains ε etc 
the geometrical relations can be written:  
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where α is an angle between the axis of revolution and the generatrix; r is a distance from axis of rev-
olution to shell middle surface.  
 In a creep conditions the total strain at the shell point consists of elastic and irreversible parts:

ijijij ce +=ε
 

, i, j =1,2. So, let us write the physical law in the following form: 
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where E, G are the Young and shear modulus correspondently, ν is the Poisson ratio. 
 Substituting the expression (5) into (6), let us connect the membrane forces Nij, bending and 
torsional moments Mij 
 

 with the geometrical unknowns: 
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are the additional power factors, caused by irreversible creep strains of metal.  
 By use the Lagrange variational principle and equations (5) and (7), the variational equality is 
obtained:  
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here m

ijδε   and ijδχ are the variations of the total strain components as well as curvature variation in 
the shell; р is the vector of loading; δw is the variation of normal displacements.  
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Let us use for this problem solution the FEM approach with 4-nodal finite element of conical shell 
[5]. The shape functions of third order are used. Using vector-matrix representation of relations (5-8), 
we finally obtain the variational equation in the following form : 
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where  [E] is the matrix of elasticity.  
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 Equilibrium condition in a node leads to the summation of the components of internal and ex-
ternal forces on all elements containing this node. Hence, substituting in equation (9) the integration 
over the shell by a sum of integrals over finite elements, we obtain: 
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where {q} is a vector of nodal displacements in the element e. 
 Thus, the use of FEM allows reduce the variational equality (10) to a system of linear algebraic 
equations
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components of elastic strains, .  

 To describe the processes of high temperature creep and the associated damage, which take 
place in shells, let us use the constitutive equations (4). As was shown, in order to use them we need 
to obtain the distributions of amplitude stresses. So, the problem of forced oscillations has to be 
solved.  
 In these problems it is necessary to determine the mass matrix of the sys-
tem: [ ] [ ] [ ]∑∫=

e V

T dSBBM .ρ

  Then the basic equation has to be following: 
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where [ ] [ ]( )MK 2-Ω  is a matrix of ‘dynamic stiffness’ of the system; { }k

aq  is a vector of amplitude 

values of nodal displacements. The components of the vector { }k
aP  are determined by amplitude val-

ues of load’s harmonic part: ( ) ( )tfpptp a 20 2sin π+= .  
 The system (12) is solved relatively { }k

aq by the frontal method, and further the amplitude von 
Mises equivalent stresses are determined. The system of algebraic equations (12) is solved by Cho-
lesky method.  
 The presented method for cyclic creep-damage simulation in thin shell structures is realized as 
application package for IBM-type computers. 
 
3. ESTIMATION OF LONG-TERM STRENGTH OF AVIATION GAS TURBINE CORPS  
 Let us consider the results of numerical studies in the cyclic creep and damage in the flue pipe 
of gas turbine engine АІ-20. By use of 

 

the developed software let us simulate it by the combination of 
cylindrical and conical shells. FE model consists of 650 elements is presented on the Fig. 1. 
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Fig. 1 FE model of flue pipe of gas turbine engine АІ-20 

 
 The working temperatures of flue pipes are 700-900°C [6]. Therefore, for the their manufactur-
ing the high-temperature steels EI435 and EI437B are used. The flue pipe made from EI437B steel 
was studied. The material constants for constitutive equations (4), which were obtained after the 
processing of test data, are: В=1.31×10-6 МPа-n/h, n=k=4.12, D=2.08×10-5 МPа-r

 Two types of loading were considered. First one is connected with high frequency oscillations 
caused by fuel burning. The second type of loading is connected with plane evolution and accelera-
tion.  

/h, r=l=4.5. Simula-
tion was performed for following values: length is 2 m, initial diameter of burning zone is 0.4 m, the 
nozzle angle is 37°, diameter of cylindrical part of primary zone is 0.8 m; exit diameter of secondary 
part is 0.7 m with nozzle angle 7°. The height of walls is 0.001 m. 

 Distribution of pressure in the combustion chamber of modern aircraft matches the form of the 
cycle, which is shown in Fig.2 [7]. 

 

 
Fig. 2 Typical flying cycle  

 
 So, to calculate the stress-strain state of GTE and its long term strength in creep conditions let 
us consider the joint action of static load p0, cyclic load component similar to shown in Fig. 2 and 
harmonic loading with amplitude value pa
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 The influence of the vibrations for secondary zone is negligible, so for it the last summand in 
(13) can be omitted.  
 The numerical simulation of long term strength of the considered flue pipe had been performed, 
the determined time to fracture is equal to 660 h. The results are presented on Figs.3 – 6. Curve 1 had 
been built for the initial time moment as well as curve 2 corresponds to the time 660 h, when the 
process of hidden damage accumulation was finished. Fig.3 and 4 contain the distribution of normal 
and axial displacements along the flue pipe. Fig 5 and 6 contain the distribution of axial and circumfe-
rential forces.   

  
Fig. 4 Axial displacement along the flue 
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Fig. 3 Normal deflection along the flue pipe pipe 

 
Fig. 5 Axial force distribution 

 
Fig. 6 Circumferential force distribution 

 The damage parameter’s distribution on outer surface of flue pipe is presented in Fig. 7. Here 
the Fig 7,a contains the data for first 10 hours of damage accumulation, Fig. 7,b corresponds to 
t=660 h. 

 

 
а 

 
b 

а – 10 hours; b – fracture moment, t=660 hours 
Fig. 7 Damage distribution on the outer surface of flue pipe 

 
 Deformation feature of the considered flue pipe is the fact, that irreversible normal and axial 
displacements are very small (0.1mm) that visually in operation cannot be noticed. However, the 
damage accumulation proceeds just due to creep mechanisms.  
 Thus, the result of numerical simulation of the cyclic creep in flue pipe of gas turbine engine is 
the place, where fracture occurs. This one corresponds to the burning zone. Analysis of the distribu-
tion of damage parameter shows that in the shell presents another area with its very large values - the 
region of transition between primary and secondary zones

 

 (ω =0.58 – 0.68). When some design para-
meters and values that characterize the load will be changed, it is very likely macro-crack occurrence 
and in this place. 
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