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A system of differential equations that describes nonlinear transversal 
vibrations and takes into account pliability to transversal shear and 
compression strains of composite plates is given. The parametrical 
analysis of dependence on fundamental frequency and amplitude of 
transversal vibrations of a strip-plate for hinge- fixed or hold rigidly 
plate is carried out.  

 

 
INTRODUCTION  

The laminated elements from composites are widely used in various designs and technical means 
under intensive cyclic loading. This loading can cause different bending proportional to the plate thickness 
what stipulates the geometrically non-linear character of the strain state. Therefore, to prevent the resonance 
phenomena the fundamental frequencies in such cases should be calculated using the geometrically nonlinear 
relations of the plate dynamics which take into account the pliability to transversal shear and compressive 
strains. 

The majority of studies on nonlinear dynamics of thin-walled elements of design are based on the 
Karman quadratic theory being the generalization of the classical linear Kirchhoff-Lave theory for geometric 
nonlinearity [1]. In some works the relations of nonlinear technical theory were used, the basis of which 
forms the Timoshenko model [1–4]. However the theories grounding on the hypotheses of these authors do 
not take full account of the peculiarities of behavior of composites. Therefore this paper utilizes a 
mathematical model of dynamic deformation of plates, which considers the above peculiarities [5, 6]. The 
influence of boundary conditions on amplitude-frequency characteristics during nonlinear vibrations of 
composite plates has been analyzed on this basis. 

 
1. STATEMENT OF THE PROBLEM  

Consider a composite plate of thickness h2   with effective elastic characteristics and averaged 
material densityρ , related to the Cartesian coordinate system ),,i(xi 321= . Assume that one dimension of 
the plate exceeds considerably the other one. Then its dynamic geometrically nonlinear stress-strain state 
depends only on one spatial coordinate xx =1  in its median plane. The equations of plate motion in this case 
may be written as [5] 
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where w,u  are relatively tangential and transversal displacements of the plate median plane, γ  is the 

angle of rotation of normal element to the median plane before deformation, hBc ρ21 =  is the 

velocity of longitudinal waves propagation in the plate, DΛ=2
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Here ν,E  are Young’s modulus and Poisson’s ratio in the median and equidistant to it planes; 
ν ′′,E  are the same values in the planes perpendicular to the median plane; G′ – is the transversal shear 

modulus. 
The origin of coordinate x  in the middle of the plate sides perpendicular to it the sides is 

arranged at a distance a2  one from another. Then in the case of a hinge fixing of these sides the 
boundary conditions are: 

        0=± )t,a(u , 0=± )t,a(w , 0=± )t,a(M , (4) 
 

and for hold rigidly sides the boundary conditions  are defined as  
 

         0=± )t,a(u , 0=± )t,a(w , 0=± )t,a(γ . (5) 
 
The system (1)–(3) together with boundary conditions (4) or (5) forms a mathematical model of free 

geometrically nonlinear transversal vibrations of hinge-fixed or hold rigidly of the composite strip-plates 
which undergo deformations of transversal shear and compression. 

The model presented describes also the forced longitudinal and shear vibrations generated by free 
transversal vibrations. They are also agreed with the results of investigations of quadratically nonlinear waves 
in elastic bodies as in Ref [7]. 
 
2. CONSTRUCTION OF SOLUTION 

In Ref. [5] the fundamental frequency-to-amplitude of nonlinear vibrations ratio of the plate with 
hinge fixing of the edges ax ±= : 
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has been analyzed , where ω  is the fundamental frequency of nonlinear natural vibrations of the plate, A  is 

the dimensionless amplitude, 22
1

2
20 æ λλω += /c  is the fundamental frequency of linear natural 

vibrations of the plate, hc ρΛ 22 =   is the velocity of shear wave propagation in the plate, a/ 2πλ = , 
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The equality (7) has the same form as in Ref. [1] for the plate sufficiently long in one direction with 

hinge-fixed edges when the classical theory is applied. For motionless hinges the value of the coefficient 
3=cK  was obtained in Ref. [1]. If in equality (7) passing to the limit is performed 
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we can obtain the analogous result. 

For the fundamental frequency of nonlinear transversal vibrations of the plate hold rigidly on the 
edges to be found, it is necessary to choose the unknown functions in (1)–(3) in such  way that the boundary 
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conditions (5) were satisfied 
 

xsin)t(Uu,xsin)t(Y,xcos)t(Ww λλγλ 422 === . (9) 
 
Neglecting in Eq. (2) the inertia of the element normal to the median plane [5], we obtain: 
 

                                     )t(W22
1

2
1

4æ
æ=Y(t)

λ
λ

+
.  (10) 

 
To define the function  )(tU  from (1) we have an ordinary differential equation 
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the solution of which is written in the form 
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where  12 cu λω =  is the fundamental frequency of linear longitudinal vibrations of the plate. 

From the initial condition at moment  0=t  the velocity of points of the median plane along the axis 
is equal to zero and the median plane itself takes the form of the surface 

  
xcos)(W)x,(w λ200 = , 

 
we can define the integration constants 
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If we introduce the dimensionless values into consideration 
 

htWt 2)()( =ξ , atUt 2)()( =η  (13) 
 

 
by substitution (10) and (11), with regard for (12) in (3), after application of the Bubnov-Galerkin procedure 
[1], we obtain the integro-differential equation for the function of dimensionless bending of the nonlinear 
transversal vibrations of the plate considered: 
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3
34 λλω += /c  is the fundamental frequency of free linear transversal vibrations of 

the plate hold rigidly on the edges; 
  

                                  )(KK c β4111 += . (15) 
 
The passing to the limit in (15) as the parameter pliability to transversal shear strains 
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G/E ′ approaches zero 
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yields the classical result from Ref. [1]. 

If we integrate the equations (14) by the full period of vibrations ωπ /T 2=  neglecting appropriate 
of infinitesimal values, as in Refs. [1, 5], we obtain the relation like expression (6) 
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3. ANALYSIS OF THE RESULTS 

Introduce the notations 1µ  and 2µ  for the value ω  to corresponding fundamental frequencies of 
natural free vibrations of the plate ratio 
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It is obvious that for 1<<a/h  and limited value of pliability to transversal shear G/E ′  
  

                       312334 ,/ ≈≈η . (20) 
 

In coordinates A,µ  ( 21 µµµ ,= ), we construct the backbone curves [1], illustrating the 
dependences between the dimensionless frequencies 1µ , 2µ  and the dimensionless amplitude A . 
Moreover, for one coordinate we have the following dependence: 

 
                                       12 µηµ = . (21) 

 
The coefficient η  we shall call the influence coefficient on the amplitude-frequency characteristics 

of hold rigidly edges which is compared with the hinge fixed. Figs. 1, 2 present the backbone curves for 
10,a/h = , 3750,=′=νν  for different values GE ′ : 0=′GE   shear and compression strains are 

absent, )(G/E 12 +=′ ν  for isotropic material, 10=′GE  and 60 .  
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Fig.1. The dimensionless frequency 1µ  vs. the dimensionless amplitude A  neglecting (а) and 

transversal compression for different values GE ′ (б). 
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Fig.2. The dimensionless  frequency 2µ  vs. the dimensionless amplitude A  neglecting (а) and 
transversal compression for different values GE ′ (б). 

 
When parameters a/h  and ν  are given we have observed a considerable influence of the edges 

fixing type and pliability parameter GE ′ on the value 1µ  and 2µ  for 51 ≤≤ A  in comparison with 
classical results for 0=′GE . 

 
4. CONCLUSION 

Taking into account the pliability to transversal shear and compression strains for nonlinear 
vibrations of composite plates, we can increase the rigidity of the dynamic system considered. In defining the 
frequency of nonlinear vibrations of composite plates with amplitude close to five thicknesses, it is necessary 
to utilize the refined mathematical model. Provided that the edges are hold rigid the fundamental fundamental 
frequency increases by 2.31 times in comparison with hinge fixed edges of the plate. 
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