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Research method of the dynamic stability of the geometrically nonlinear 
vibration modes of the shallow shells with complex plan form is used. 
Mathematical statement of the problem is carried out in framework of 
reinforced theory shells of the first order. The proposed method is based 
on the R-functions theory, variational methods, “limited stability criterion”, 
obtained from the definition stability by Lyapunov and method by Runge-
Kutta. Numerical results for shells with complex form under transverse 
periodic load can be received using the realized software of designed 
numerically-analytical approach. 

 
 

INTRODUCTION 
Laminated composite shallow shells are widely applied as structure components in the 

construction of aerospace, mechanical, ship-building and other branches. Dynamical instability 
analysis of composite shallow shells and plates subjected to a harmonic transverse load has received 
considerable attention in the literature [1, 2, 3, 4 ]. However the most papers consider an investigation 
of nonlinear vibrations of plates and shells with simple enough form. There are only few works in 
which laminated shallow shells or plates with a shape different from rectangular, circle or ellipse are 
presented. Deficiency of such papers is explained by the difficulties of construction of analytical 
expressions for basic functions. These functions are needed to reduce a nonlinear system of 
differential equations with partial derivatives to a system of the ordinary differential equations for 
time. One of universal approaches, which can be used for solving this problem, is founded on the 
application of the R-functions theory [5, 6]. This theory allows a construction of complete set of the 
coordinate functions for different types of boundary conditions. In this paper the R-function theory 
together with variational methods and the “limited criterion of stability by Lyapunov” [7] is applied as 
a new approach to investigate vibration modes of laminated shallow shells supported on complex plan 
form. 
 
1. THE GOVERNING EQUATION OF THE SHALLOW SHELLS THEORY 

Consider a laminated shallow shell of an arbitrary plan form constructed of a finite number N 
of orthotropic layers, oriented arbitrary with respect to the shell coordinates (x,y,z). In this paper we 
shall only investigate symmetric laminated shallow shells.  The components of the displacements at 
an arbitrary point of the shell in the x,y and z directions are u,v and w respectively. According to the 
first-order shear deformation theory, the inplane displacements u and v are linear functions of the 
coordinate z and the transverse displacement w is a constant throughout the thickness of the shell. 
Under this assumption the displacement field may be given in the following form:  

xzuu ψ+=′ , yzvv ψ+=′ , ww =′  

where vu,  and w  are the displacements at the middle surface, xψ and yψ  are the rotations of the 
middle surface about the Oy and Ox axes respectively. The nonlinear strain-displacement relations of 
the shallow shells can be written as 

xzk+=′ 1111 εε ,    yzk+=′ 2222 εε ,    033 =′ε ,   xyzk+=′ 1212 εε ,   xx ukw ψε +−=′ 1,13  

                                                
1 Corresponding author. Email: ktv_ua@yahoo.com 
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yy vkw ψε +−=′ 2,23 ,    xxxz w,+=′ ψε ,    yyyz w,+=′ ψε  
in which 

2
111 ,

2
1

, xx wwku ++=ε ,   2
222 ,

2
1

, yy wwkv ++=ε ,   yxyx wwvu ,,,,12 ++=ε   

xxxk ,ψ= ,   yyyk ,ψ= ,   xyyxxyk ,, ψψ +=  

Here 1k and 2k  are two principal curvatures of shallow shells, the subscripts following a comma stand 
for partial differentiation. Let us present unknown functions as components of the following vector 

( )TyxwvuU ψψ ,,,,= , then the governing equations are derived as follows: 
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Here ijL  are linear differential operators, which can be expressed as follows:   
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The right part of the equation (1), that is )(wNl  is presented as follows: 
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The coefficients ijij DC ,  ( )0=ijK  and )5,1(, =jmj  are calculated by following formulas:  
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Here ( )m
ijB  are the stiffness coefficient of the m-th layer, ( )5,4=iki  is the shear correction factors. 

 
2. SOLUTION METHOD 

Let us present unknown functions with help series using the eigenfunctions 
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 of the corresponding linear vibration problem 

( ) ( )∑
=

=
2

1
,

i
ii yxwtyw ,   ( ) ( )∑

=
=

2

1
,

i
xix yxty

i
ψψ ,   ( ) ( )∑

=
=

2

1
,

i
yiy yxty

i
ψψ  

( ) ( ) ∑∑∑
= ==

+=
2

1

22

1
,

i j
ijji

i
ii uyyyxutyu ,   ( ) ( ) ∑∑∑

= ==
+=

2

1

22

1
,

i j
ijji

i
ii vyyyxvtyv    (2) 

The functions  
ii yxiii wvu ψψ ,,,,  are the components of the eigen vector  iU



, and the functions 

ijij vu ,  must be solutions of the following system of the differential equations:  
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The right parts of the system (3), denoted as operators ( )jik wwNl ,)2( , ( )2,1=k  have the following 
form:  
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It should be noted that the system (3), added the corresponding boundary conditions and also the 
natural vibration problem were carried out by RFM method [5, 6].  
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 Substituting the expressions (2) for unknown functions  yxwvu ψψ ,,,,  into third equations 
of the system (1) and applying the procedure by Bubnov-Galerkin one can obtain nonlinear system of 
the ordinary differential equations in ( ) )(, 21 tyty of the following form:   
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The factors of the equations are defined by formulas:  
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Then expressions for ( ) ( ) ( ) LLLNd
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components of the following vectors: sh
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The obtained system (4) is solved by Runge-Kutta method and special stability criterion described 
below. 
 
3. INVESTIGATION OF STABILITY OF NONLINEAR VIBRATION MODES 

 Let us consider the stability of the second periodic or chaotic vibration form which is defined 
as 0)(2 =ty . Instability of the form 0)(2 =ty  means “swap" of energy from one harmonic of the 
Fourier series in another one. The variables )(2 ty , )(2 ty  may be considered as variations. That is 
why we assume that value of the variation 2y  is essentially smaller than the variable 1y  in zone of 
stability of the vibration form, 0)(2 =ty , as it is accepted in stability theory. 
 Limited criterion for finding instability zones of nonlinear vibration modes for considered 
system is applied [7]. It is assumed that initial value of the variable y is not however small variable 
and so the connection between constant ε  and value of δ [7] is introduced. Let the variable t be 
varied from 0 to T. Then the following criterion of stability/instability is taken: 
Instability of the vibration form 0)(2 =ty  is fixed if the following condition  

)0()( 22 yty ρ≥ ,    ( )Tt ≤≤0  
holds true. The foregoing criterion, obtained provided that value δ  can not be arbitrary small one is 
called as “limited criterion of stability” which is a consequence of the classical criterion of stability by 
Lyapunov [7,8]. Here the value 1−ρ  is an order infinitesimal of the initial variation with respect to 
maximum permissible variation of ε  for any 0≥t . The increasing value ρ  means that allowable 
initial variations are decreasing. It exists some arbitrariness while choosing ρ ; it is not by accident 
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because in the instability region the variations while increase t come out limits of the initial solution 
ε - neighborhood for any choose of parameter ρ . For definiteness this value is taken as 10≤ρ .  

 For determining the finite value of parameter T experiment calculation is realized into some 
mesh points at chosen scale of system parameters at the fixed value of T. Increasing the value of 
parameter T and corresponding calculations will be continued until boundaries of instability zones are 
stabilized at chosen scale of variables plane.  

 
4. NUMERICAL RESULTS 
 Find the stability zones of the vibration forms for clamped three layers shallow spherical 
shells presented in Fig. 1(a) and supported on plan form shown in Fig 1(b). 

 
The shell is loaded transverse force, ( ) tFtP Ω= cos . The mechanical characteristics of the shell are: 

25.0,2.0,5.0,25 12223213122 ===== νEGEGGEE . The shear factors are taken to be 

6/52
5

2
4 == kk .  The geometric parameters of the shell are taken as follows:   

( ) ( ) ( ) 1.02/,1.0/2/2,25.02/2/,1/ ====== ahRaRaadacab yx  
The  boundary conditions are accepted in the following form (clamped edge): 
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The expressions for R-operators 00 ,∨∧  are defined according to [5]. The corresponding 
structural formulas [5, 6] are  

1Pu ω= ,   2Pv ω= ,   3Pw ω= ,   4Px ωψ = ,   5Py ωψ =  

Here ( )5,4,3,2,1, =iPi  are indefinite components of the constructed structures of solution, which 
are expanded in series in some complete system of functions. The coefficients of this expansion are 
sought from the stationary condition for corresponding functional. 

Values of the dimensionless parameter of the natural frequency for the three layers cross-ply 
)0,90,0( 000  spherical shell, panel and plate are presented in the Table 1.  

Table 1. Values of the Dimensionless Frequency Parameter ( )
2

2
Eh

a
ii

ρλ=Λ  

)/2,/2( yx RaRa  1Λ  2Λ  3Λ  4Λ
1Λ

 

 (0.1,   0.1) 18.851 29.139 36.113 43.113 

 (0,      0.1)  18.561 29.068 36.085 43.054 

 (0,      0) 18.453 29.035 36.069 43.031 

Fig.1(a,b). Plan of clamped three layers shallow shells 
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Instability zones are presented for cross-ply spherical shells in the Fig. 2. Term of stabilization is 
T=1000, that is, calculation time, at which stabilization of boundaries of instability zones are 
observed.  

 
Fig.2. Instability zone for cross-ply spherical shell 

Calculations were carried out in variable scale plane ),( FΩ , where parameter Ω  was varied 
5.00 ≤Ω≤  and parameter F was varied 20 ≤≤ F .  

Obtained results show that considered system may have instability behaviour at the parameter 
values starting with Ω=0.27 and F=0.42.  

 
CONCLUSION 

The effective approach for investigation of stability of nonlinear vibration modes of the laminated 
shallow shells resting on complex plan form and having symmetric structure of layers are proposed. 
The method is based on R-functions theory, variational methods, special criterion of stability and 
method by Runge-Kutta. There is presented numerical results for clamped three layered spherical 
shallow shells. 
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