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HYBRID AUTOMATA
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National Taras

Shevchenko University of ) . . . . _
Kyjv, Ukraine In the article new constructive conditions for stability of trivial equilibrium

point of hybrid automaton with respect to part of variables are proposed.
Conditions are based on construction of a sequence of values of
Lyapunov functions at state switching points. Proposed conditions
principally differ from existing conditions in that they do not depend on
the values of hybrid automaton’s solutions at moments of switching.

INTRODUCTION

Hybrid automatonisatuple H =(Q, X, F, Init, Inv, Jump,z), where

-t isahybrid time,

- X ={X,...X}, n>0,% €R isaphase space;

- F={f : QxR"—> R",i =1 N} areright hand sides of differential equations which describe
dynamicsin local states;

- Init : InitcQxR" isasa of initial states;

- Inv: InvecQxR" isaninvariant set of each local state;

- Ju pn: QxR"— B(QxR") isamap which describes automaton's transitions.

We describe now the usage of Lyapunov’'s second method for investigation of stability of
equilibrium point of hybrid automata.

Onerefer to existing methods of investigation of stability of hybrid automata.

Suppose that dynamics in i-th local state is described by systems of differential equations
x(t)=f, (t,x(t)) , i=1..,N. Most of methods require a set of Lyapunov functions {V,,i=1,...,N}
to be defined.

Existing approaches require non-increasing of Lyapunov functions at switching points on
values of hybrid automaton's trajectories:

1) R. DeCarlo, D. Liberzon, A. Morse[1,2]:

Vi (x(t2)) -V ((t.2)) < 7 X6l 7 >0,

where t; <t;,i < j areswitching moment (asymptotic stability).

2) M. Branicky [3]:

Vi (X(6 ) V(X (o))

where t;, isa k-th moment of switching to the vector field f; .

3) H. Ye, A. Michel [4] use the "weak Lyapunov function":

Vi(x(®) <h(Vi(x(t ))).te(t;, t;,),

where h:R" — R" is a continuous function which satisfies initial condition h(0)=0, t. is an

J
arbitrary switching moment.
As noted earlier, proposed conditions depend on values of trajectory at switching moments.
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1. HYBRID AUTOMATA STABILITY CONDITIONS
Let the space R® and two local states be given. The first local state is defined by subset of
phase space,
Q, ={xeR*:x,—kx <0},
the second one is defined as,
Q, ={xeR*:x,—kx >0} .
Thereby transition from the state | to the state 1l occurs when a trajectory reaches the line
X, =kx,. Suppose that in local states dynamics is described by systems of linear differential

equations.
Assumethat for each system there exists a positive-definite L yapunov function such that
% <0,if xeQ, i=12. (1)

0
Thus we require (1) only on the set which defines current local state.
Choose an arbitrary point x° on the switching line. Let 1 bean initial state. Let us build a level

set of thefunction V,(x) which startsat x° (fig. 1).

X2 X2 =kX1

0
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T

Fig. 1. The first Lyapunov’s function level-line

Denote c®=V,(x°). Let wus find an intersection point of a level set
C, ={xeR*:V,(x) =c’ xe Q} withtheline x,=kx . Denoteit by x* (fig. 1).

At the point x' the switching occurs from the state | to the state |1 . Thereforelet ¢ =V, (x').
Let us build alevel set of the Lyapunov function V,(x) , which startsat x* in the second local state
C, ={xeR*:V,(x) =c,,xeQ;} (fig. 2).

Let us find an intersection point of the level set C, ={x e R*:V,(X) = ¢,,xe Q,} with the line
x, = kx,. Denoteit by x* (fig. 2).

X2 =kX1

/ level sets

[

\ '3

local trajectories

Fig. 2. The R? Lyapunov’s function level-line and trajectories
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From theinequality —~—* <0 inthefirst local state it follows that a trajectory, which starts

@
at x° can not leave a domain bounded by the level set C, ={xe R*:V,(x) =c’,x € Q,} . Analogously,
trajectory of the second local state, which startsat x* can not leave a domain bounded by the level set
C, ={xeR*:V,(x) =c,,xeQ;} (fig. 2).

Thereforeit can be assumed that if

<} 2

then thetrivial equilibrium point of the hybrid automaton is asymptotically stable.
If should be noted that condition (2) can not be applied in cases when transition occurs on non-
straight lines. For example, suppose that transition occurs on the curve shown on thefig. 3.

line of switching

/ y
level sets

Fig. 3. The R* Lyapunov’s function level-line and trajectories with non-straight line of
switching

It is obvious that condition (2) is not satisfied but trivial equilibrium can be stable. Therefore it
is reasonable to use the following condition instead of (2)
c| < [co
Condition (2) can be generalized to the cases when phase space is R" and switching surfaces
are arbitrary (fig. 4).
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Fig. 4. The R® Lyapunov’s function level-line and trajectories

Suppose that trajectory of hybrid automaton starts in the first state. We use the notation x| _;.;

to indicate that hybrid automaton switches from state i to state i +1 at the point x.

To obtain constructive stability conditions let us build the following sequence (s-condition):
c’e(0,C), c'= 1Tnax V(xh), ¢ = Zr‘nax Vi(xX),...,c" = max VH(x") (3)
Vlalz)gc‘o VZE;ZS)SQ vi ’(\‘ﬁ})SCNﬂ
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Here we take into account the case when a leve set intersects with a switching surface before
(intime), atrajectory reaches switching surface.

In the condition (3) the second restriction allows to take into account a value of Lyapunov
function at the switching point and to useit for construction of the next level set.

2. STABILITY WITH RESPECT TO PART OF VARIABLES IN HYBRID AUTOMATA
Let us build the following sequence {c'} , i =0, N :
®c(0.C), G (h) =sup{V(x) | x€ I,V (X) < h} (4)
It can be built starting from arbitrary initial state (not only from the first state). We introduce the
following notation: B, ={xeR" : [{|<r}, S ={xeR" : |{=r}.

We define a hybrid time < either as a finite sequence ¢, ={z}),
where: 7, = (Pre_jump, [t",,t'], Post_ jump),i=1.N; t,=0; [t",,t'] are closed segments, and the
last dement is a semi-open interval 7, =[t,,») , or as an (infinite) sequence 7, ={r,}, of closed
segments [t ,,t°] . Denote T isthe set of all possible 7.

Definition 1. A phase orbit of hybrid automaton H isaset y ={(zr,i,X)},where r T ,i —a
number of alocal stateand x : 7 — R" isafunction suchthat (i(z,), X(z,)) € Init, for all « such that
r,<7/. Here (i(t), x(t))elnv defines continuous dynamics in i-th local state and
(i(z;,1)s X(7,,,)) € Jump(i(z/), X(z)) defines discrete dynamics.

Definition 2. Continuous state x =0 is called atrivial equilibrium point of hybrid automaton
if (i) there exists a non-empty set Q = Q, such that for all i e Q condition (i’, Z) € Jump(i, 0) implies
that Z=0 and i’eQ; (i) f(i,0)=0 foral i Q.

Definition 3. Trivial equilibrium of hybrid automatonH is called stable (in sense of
Lyapunov), if for each &>0 there exists 6 >0 such that for every trgectory the condition

|X(t,)| < & impliesthat |x(t)| < & for all ter. Here || denotes Euclidean norm.
Let us denote Q; the set which describes i -th local state.
Assume that there exist Lyapunov functions defined on the sets Q, .
Definition 4. An indexed family V (i, x) = {V'(x)}, i =1 N is called a hybrid s-function, if

each V'(x) is positive definite and for every sequence {c'},i =0, N defined as in (4) the inequality
c" <c° holds.

We will use hybrid s-function for investigation of stability of trivial equilibrium point of
hybrid automata.

Definition 5. The following expression is called a derivative of hybrid s-function with
respect to hybrid automaton:

\/(i,x):{dv(;(x) £(x(1)), i=L—N}.

X

Theorem 1. [5] Suppose that hybrid automaton H has a trivial equilibrium point, |Q|<oo,
i=1LN-1, Jump(N,Xx) = (1,x) . Also suppose that a neighborhood of the coordinate origin D — X is
given. If there exists a positive-definite hybrid s-function V (i, x): QxD — R for hybrid automaton

H , such that dVd(X) f(x(t))<0 for al xeDNQ, and i=1 N, then x=0is stable trivial
X

equilibrium point of hybrid automaton H.

It should be noted that checking of the proposed condition does not require investigation of
reachability of switching surface by hybrid automaton’s trajectories. It is connected with the fact that
if switching surface is not reachable and s-condition is satisfied, then stability of equilibrium follows
from classical Lyapunov theorem, because in this case we can simply consider system on the whole
phase space.

Also a principal value has the fact that proposed theorem does not require computation of
hybrid automaton’ s solution.

Let us construct stability conditions from impulsive hybrid automata.

53



Suppose that hybrid automaton's trajectory starts in the first state. We use the notation
X~ —x"|_,,, toindicate that hybrid automaton switches from the state i to i +1 and the value x'~
is taken from the set which determines jump condition, while x'* is the value of phase coordinate
after jump, i.e. X* =q(x").

Theorem 2. Suppose that hybrid automaton H has the trivial equilibrium point x=0,
Q< o, Jump(i, X) ={(i +1, ¢(x))}, for i=LN-1 Jump(N,x)=(Lqy(x)). Also suppose that a
neighborhood of the origin D < X is given. If for each local state Q. there exist positive-definite
functions V(i, X): QxD — R such that
dv'(x)

dx

2. for every sequence ¢' which startsin arbitrary state the condition ¢" < c° is satisfied;

3. there exists a continuous monotone increasing function w () : R — R", such that (0) =0
and ||q(2)|<w(|Z)), VieQ . Then x=0 is stable trivial equilibrium point of impulsive hybrid
automaton H.

Also corresponding theorems about instability and exponential stability have been proved.

Now let us turn to the problem of stability with respect to part of variables. Consider a hybrid
automaton described by the equations of the following kind init’slocal states:

le  Y(t) =0, 5)

y="1,(y), yelny, y=(
Y>
where y, e R*, y,e R%. We call a variable y, as observable, y, as hidden. We assume that
transitions between states g Q are continuous (Jump(q, y) = v{(r,y)}).

1. f(x(t)<0 foral xeDNQ,,i=1N;

A problem: determine stability of hybrid automaton (5) with respect to vector of observable
coordinates y,. We assume that y, =0 is a trivial equilibrium point of hybrid automaton for each

values of hidden vector vy, .

Denote n=n, +n,, || as Euclidean normin 0, |x|, and |x|, as Euclidean normsin R® and
R™ correspondingly. Similarly, 0, denotes null-vector in R™, 0 isanull-vector in R".

Definition 5. A trajectory y(y°,t) of dynamical system y(y°,t) is called stable with respect to
variables y,, if for every £>0 there exists §>0 such that inequality HyO—VO”<§ implies

(RGBSR IR
Partial case 1. Suppose that switching in automaton (5) occurs only with respect to hidden
coordinates y,. If for the system (1) in some neighborhood y, € B (0,) there exists a Lyapunov’s

function V(y,) such that V |qu 0, then solution is stable.

Partial case 2. Suppose that for automaton (5) there exists a set of y,-positive definite
Lyapunov functions such that V¢ |fq§ 0, and on switching y|,,, theinequality V'(y) <V(y) holds.

Then trivial equilibrium point of hybrid automaton is stable.
Let us mention a theorem about stability in general case.

Definition 6. A function V(y):B, (0,)xR™ — R is caled y,-uniform-positive-definite if
there exist two positive definite functions W(y,),U(y,):B,(0,) > R such that for each
y=(¥1¥,) €B.(0,)x R™ theinequality W(y,) <V(y,,Y,) <U(y,) holds.

Theorem 3. Suppose that hybrid automaton has cyclic continuous switching. If for a cylinder
DxR™, where Dc R"™, there exists a set of y,-uniform-positive-definite Lyapunov functions
V%:DxR™ — R such that V¢ |, <0 foral yeDxInv, and c¢" <c’, then x=0 is a stable trivial

equilibrium point.



CONCLUSIONS

In the paper the constructive conditions for stability of trivial equilibrium point of hybrid
automaton are proposed. Conditions are based on existence of hybrid s-functions and they do not
depend on solutions as in classical Lyapunov theory. Obtained conditions are extended to impulsive
hybrid automata. For investigation stability with respect to part of variables of hybrid automata a
notion of 'y, -uniform-positive-definite function is introduced, where y, is a phase subspace vector

analyzed for stability.
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