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ABSTRACT 

In the article new constructive conditions for stability of trivial equilibrium 
point of hybrid automaton with respect to part of variables are proposed. 
Conditions are based on construction of a sequence of values of 
Lyapunov functions at state switching points. Proposed conditions 
principally differ from existing conditions in that they do not depend on 
the values of hybrid automaton’s solutions at moments of switching. 

 
 
INTRODUCTION  

Hybrid automaton is a tuple ( , , , , , , )H Q X F Init Inv Jump τ= , where  
- τ  is a hybrid time, 
- 1{ ,..., }nX x x= , 0n ≥ , ix R∈  is a phase space; 
- { : , 1, }n n

iF f Q R R i N= × → =  are right hand sides of differential equations which describe 
dynamics in local states; 

- : nInit Init Q R⊂ ×  is a set of initial states; 
- : nInv Inv Q R⊂ ×  is an invariant set of each local state; 
- : ( )n nJu mp Q R Q Rβ× → ×  is a map which describes automaton's transitions. 
We describe now the usage of Lyapunov’s second method for investigation of stability of 

equilibrium point of hybrid automata. 
One refer to existing methods of investigation of stability of hybrid automata.  
Suppose that dynamics in i -th local state is described by systems of differential equations 

( ) ( , ( ))ix t f t x t= , 1,...,i N= .  Most of methods require a set of Lyapunov functions { , 1,..., }iV i N=  
to be defined. 

Existing approaches require non-increasing of Lyapunov functions at switching points on 
values of hybrid automaton's trajectories: 

1) R. DeCarlo, D. Liberzon, A. Morse [1,2]: 
2

1 1 1( ( )) ( ( )) ( )j j i i iV x t V x t x tγ+ + +− ≤ − , 0γ > ,     
where ,i jt t i j< <   are switching moment (asymptotic stability). 

2) M. Branicky [3]:  
, , 1( ( )) ( ( ))i i k i i kV x t V x t −≤ ,      

where   ,i kt  is a k -th moment of switching to the vector field if . 
3) H. Ye, A. Michel [4] use the "weak Lyapunov function": 

1( ( )) ( ( ( ))), ( , )i i j j jV x t h V x t t t t +≤ ∈ ,      

where :h R R+ +→  is a continuous function which satisfies initial condition (0) 0h = , jt   is an 
arbitrary switching moment. 

As noted earlier, proposed conditions depend on values of trajectory at switching moments. 
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1.  HYBRID AUTOMATA STABILITY CONDITIONS  
Let the space 2R  and two local states be given. The first local state is defined by subset of 

phase space, 
 2

1 2 1{ : 0}x R x kxΩ = ∈ − < ,      
the second one is defined as,  

 2
2 2 1{ : 0}x R x kxΩ = ∈ − > .      

Thereby transition from the state I  to the state II  occurs when a trajectory reaches the line  
2 1x kx= . Suppose that in local states dynamics is described by systems of linear differential 

equations. 
Assume that for each system there exists a positive-definite Lyapunov function such that 

( )

( ) 0i

i

dV x
dt

< , if   ix∈Ω , 1,2i = .    (1) 

Thus we require (1) only on the set which defines current local state. 
Choose an arbitrary point 0x  on the switching line. Let I  be an initial state. Let us build a level 

set of the function 1( )V x  which starts at 0x  (fig. 1). 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The first Lyapunov’s function level-line 
 

Denote 0 0
1( )c V x= . Let us find an intersection point of a level set  

2 0
1 1 1{ : ( ) , }C x R V x c x= ∈ = ∈Ω  with the line  2 1x kx= . Denote it by 1x  (fig. 1). 

At the point 1x  the switching occurs from the state I  to the state II . Therefore let 1 1
2 ( )c V x= . 

Let us build a level set of the Lyapunov function 2 ( )V x  , which starts at 1x  in the second local state 
2

1 1 0 1{ : ( ) , }C x R V x c x= ∈ = ∈Ω  (fig. 2). 
Let us find an intersection point of the level set 2

1 1 0 1{ : ( ) , }C x R V x c x= ∈ = ∈Ω  with the line 

2 1x kx= . Denote it by 2x  (fig. 2). 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The 2R  Lyapunov’s function level-line and trajectories 
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From the inequality 1

(1)

( ) 0dV x
dt

<  in the first local state it follows that a trajectory, which starts 

at 0x  can not leave a domain bounded by the level set 2 0
1 1 1{ : ( ) , }C x R V x c x= ∈ = ∈Ω . Analogously, 

trajectory of the second local state, which starts at 1x  can not leave a domain bounded by the level set 
2

1 1 0 1{ : ( ) , }C x R V x c x= ∈ = ∈Ω  (fig. 2). 
Therefore it can be assumed that if  

2 0x x< ,     (2) 
then the trivial equilibrium point of the hybrid automaton is asymptotically stable.  

If should be noted that condition (2) can not be applied in cases when transition occurs on non-
straight lines. For example, suppose that transition occurs on the curve shown on the fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The 2R  Lyapunov’s function level-line and trajectories with non-straight line of 
switching 

 
It is obvious that condition (2) is not satisfied but trivial equilibrium can be stable. Therefore it 

is reasonable to use the following condition instead of (2) 
 2 0c c<       . 

Condition (2) can be generalized to the cases when phase space is nR  and switching surfaces 
are arbitrary (fig. 4). 

 

 
Fig. 4. The 3R  Lyapunov’s function level-line and trajectories 

 
Suppose that trajectory of hybrid automaton starts in the first state. We use the notation 1|i ix → +  

to indicate that hybrid automaton switches from state i  to state 1i +  at the point x . 
To obtain constructive stability conditions let us build the following sequence (s-condition): 

1 2
1 2 2 3

1 1 2 2
0 1

0 1 2 1 2 3 2

( ) ( )

(0, ), max ( ), max ( ), ,
x x
V x c V x c

c C c V x c V x
→ →

≤ ≤

∈ = = 

1

1

1

( )

max ( )
N

N
N N

N

N N

x
V x c

c V x
→

−≤

=  (3) 
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Here we take into account the case when a level set intersects with a switching surface before 
(in time), a trajectory reaches switching surface. 

In the condition (3) the second restriction allows to take into account a value of Lyapunov 
function at the switching point and to use it for construction of the next level set.  

 
2.  STABILITY WITH RESPECT TO PART OF VARIABLES IN HYBRID AUTOMATA 

Let us build the following sequence { }ic , 0,i N= : 
0 (0, ),c C∈  1( ) sup{ ( ) | , ( ) }k k kkc h V x x J V x h

+
= ∈ ≤      (4) 

It can be built starting from arbitrary initial state (not only from the first state). We introduce the 
following notation: { : }n

rB x R x r= ∈ ≤ ,  { : }n
rS x R x r= ∈ = . 

We define a hybrid time τ either as a finite sequence 1{ }N
H iτ τ= , 

where: 1 0( , [ , ], _ ), 1.. ; 0i i i i iPre_jump t t Post jump i N tτ ∗ ∗
−= = = ; 1[ , ]i it t∗ ∗

−  are closed segments, and the 
last element is a semi-open interval [ , )N Ntτ = ∞  , or as an (infinite) sequence 1{ }H iτ τ ∞=  of closed 
segments 1[ , ]i it t∗ ∗

− . Denote T  is the set of all possible τ . 
Definition 1. A phase orbit of hybrid automaton H  is a set {( , , )}i xχ τ= , where Tτ ∈ , i  – a 

number of a local state and : nx Rτ →  is a function such that 0 0( ( ), ( )) ,i x Initτ τ ∈  for all и such that 

i iτ τ ′< . Here ( ( ), ( ))i t x t Inv∈  defines continuous dynamics in i -th local state and  

1 1( ( ), ( )) ( ( ), ( ))i i i ii x Jump i xτ τ τ τ+ + ′ ′∈  defines discrete dynamics. 
Definition 2. Continuous state 0x =  is called a trivial equilibrium point of hybrid automaton 

if (i) there exists a non-empty set Q Q⊂ , such that for all i Q∈  condition ( , ) ( , 0)i z Jump i′ ′ ∈  implies 
that 0z′ =  and i Q′∈ ; (ii) ( , 0) 0f i =  for all .i Q∈  

Definition 3. Trivial equilibrium of hybrid automaton H  is called stable (in sense of 
Lyapunov), if for each  0ε >  there exists 0δ >  such that for every trajectory the condition 

0( )x t δ<  implies that ( )x t ε<  for all t τ∈ . Here ⋅  denotes Euclidean norm. 
Let us denote iΩ  the set which describes i -th local state. 
Assume that there exist Lyapunov functions defined on the sets iΩ . 

Definition 4. An indexed family { }( , ) ( ) , 1,iV i x V x i N= =  is called a hybrid s -function, if 

each ( )iV x  is positive definite and for every sequence { }, 0,ic i N=  defined as in (4) the inequality 
0Nc c≤  holds. 
We will use hybrid s -function for investigation of stability of trivial equilibrium point of 

hybrid automata.  
Definition 5. The following expression is called a derivative of hybrid s -function with 

respect to hybrid automaton: 
( )( , ) ( ( )), 1, .

i

i
dV xV i x f x t i N

dx
 

= = 
 

       

HTheorem 1. [5] Suppose that hybrid automaton Q < ∞ has a trivial equilibrium point, , 

1, 1,i N= − ( , ) (1, )Jump N x x= . Also suppose that a neighborhood of the coordinate origin D X⊂  is 
given. If there exists a positive-definite hybrid s -function ( , ) :V i x Q D R× →  for hybrid automaton 

H , such that ( ) ( ( )) 0
i

i
dV x f x t

dx
≤  for all  ix D∈ ∩Ω  and 1,i N= , then 0x =  is  stable trivial 

equilibrium point of hybrid automaton H. 
It should be noted that checking of the proposed condition does not require investigation of 

reachability of switching surface by hybrid automaton’s trajectories. It is connected with the fact that 
if switching surface is not reachable and s-condition is satisfied, then stability of equilibrium follows 
from classical Lyapunov theorem, because in this case we can simply consider system on the whole 
phase space. 

Also a principal value has the fact that proposed theorem does not require computation of 
hybrid automaton’s solution. 

Let us construct stability conditions from impulsive hybrid automata. 
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Suppose that hybrid automaton’s trajectory starts in the first state. We use the notation 

1|i i
i ix x− +
→ +→  to indicate that hybrid automaton switches from the state i  to 1i +  and the value ix −  

is taken from the set which determines jump condition, while ix +  is the value of phase coordinate 
after jump, i.e. ( )i ix q x+ −= . 

HTheorem 2. Suppose that hybrid automaton  has the trivial equilibrium point 0x = , 
Q < ∞

 
, ( , ) {( 1, ( ))},iJump i x i q x= +   for  1, 1,i N= −  ( , ) (1, ( ))NJump N x q x=

D X⊂

. Also suppose that a 
neighborhood of the origin  is given iΩ. If for each local state  there exist positive-definite 
functions  ( , ) :V i x Q D R× →  such that  

1. ( ) ( ( )) 0
i

i
dV x f x t

dx
≤   for all ix D∈ ∩Ω , 1,i N= ; 

2. for every sequence ic  which starts in arbitrary state the condition 0Nc c≤  is satisfied; 
3. there exists a continuous monotone increasing function ( ) : R Rψ + +⋅ → , such that (0) 0ψ =  

and ( ) ( )iq z zψ< , i Q∀ ∈  . Then 0x =  is stable trivial equilibrium point of impulsive hybrid 
automaton H. 

Also corresponding theorems about instability and exponential stability have been proved. 
Now let us turn to the problem of stability with respect to part of variables. Consider a hybrid 

automaton described by the equations of the following kind in it’s local states:  

( )qy f y= , qy Inv∈ , 1

2

y
y

y
 

=  
 

, 0( ) 0y t = ,    (5) 

where 1
1

ny R∈ , 2
2

ny R∈ . We call a variable 1y  as observable, 2y  as hidden. We assume that 
transitions between states q Q∈  are continuous ( ( , ) {( , )}Jump q y r y= ∅∨ ). 

 
A problem: determine stability of hybrid automaton (5) with respect to vector of observable 

coordinates 1y . We assume that 1 0y =  is a trivial equilibrium point of hybrid automaton for each 
values of hidden vector 2y . 

Denote 1 2n n n= + , x  as Euclidean norm in 10 , 
1

x  and 
2

x   as Euclidean norms in 1nR  and 
2nR  correspondingly. Similarly, 10  denotes null-vector in 1nR , 0  is a null-vector in nR . 

Definition 5. A trajectory 0( , )y y t  of dynamical system 0( , )y y t  is called stable with respect to 
variables 1y , if for every 0ε >  there exists 0δ >  such that inequality 0 0y y δ− <  implies  

0 0
1 1 1
( , ) ( , )y y t y y t ε− < . 

Partial case 1. Suppose that switching in automaton (5) occurs only with respect to hidden 
coordinates 2y . If for the system (1) in some neighborhood 1 1(0 )ry B∈  there exists a Lyapunov’s 
function 1( )V y  such that | 0

qf
V ≤ , then solution is stable. 

Partial case 2. Suppose that for automaton (5) there exists a set of 1y -positive definite 
Lyapunov functions such that | 0

q

q
fV ≤ , and on switching |q ry →  the inequality ( ) ( )r qV y V y≤  holds. 

Then trivial equilibrium point of hybrid automaton is stable. 
Let us mention a theorem about stability in general case. 

Definition 6. A function RRByV n
r →× 2

1)0(:)(   is called 1y -uniform-positive-definite if 
there exist two positive definite functions 1 1 1( ), ( ) : (0 )rW y U y B R→  such that for each 

2
1 2 1( , ) (0 ) n

ry y y B R= ∈ ×  the inequality 1 1 2 1( ) ( , ) ( )W y V y y U y≤ ≤  holds. 
Theorem 3. Suppose that hybrid automaton has cyclic continuous switching. If for a cylinder 
2nD R× , where 1nD R⊆ , there exists a set of 1y -uniform-positive-definite Lyapunov functions 

2: nqV D R R× →  such that | 0
q

q
fV ≤  for all qy D Inv∈ ×  and 0Nc c≤ , then 0x =  is a stable trivial 

equilibrium point. 
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CONCLUSIONS 
 In the paper the constructive conditions for stability of trivial equilibrium point of hybrid 

automaton are proposed. Conditions are based on existence of hybrid s -functions and they do not 
depend on solutions as in classical Lyapunov theory. Obtained conditions are extended to impulsive 
hybrid automata. For investigation stability with respect to part of variables of hybrid automata a 
notion of 1y -uniform-positive-definite function is introduced, where 1y  is a phase subspace vector 
analyzed for stability. 
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