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ABSTRACT 
 , 

Linnik A.,  
Tkachenko V. 
National Technical 
University ”KhPI”  
Kharkiv, Ukraine 

The numerically-analytical method of nonlinear vibration research 
for laminated plates loaded by static in-plane force is proposed. 
The joint use of the R-functions and variational methods allows  
apply the offered approach to a plate with a complex form and 
different types of boundary conditions. 

 
INTRODUCTION  

The analysis of the geometrically nonlinear vibrations of composite plates and shells have 
received an exceptional interest in literature due to wide application of laminated plates for modeling 
elements in modern structures.  Usually such elements have a different shape and therefore the study 
of dynamical behavior of these elements is a very difficult mathematical problem. In this work we 
propose effective approach based on using variational methods and the R-functions theory (RFM) in 
order to carry out the nonlinear analysis of laminated plates with an arbitrary planform and different 
boundary conditions, which are subjected to static load in the middle plane. Formerly this approach 
was successfully used for orthotropic plates [7] and for the investigation of free nonlinear vibrations 
of laminated plates and shells [5, 8-10]. The action of static load in the middle plane leads to the 
deformation of plate and affects the dynamic behavior. It should be noted that the study of plate 
vibrations subjected to static load is also important because it is part of the dynamic analysis of plates 
with periodic load, dynamic instability and parametric vibrations [2]. 

The proposed method is numerically implemented in the system POLE-RL and is illustrated by 
some examples.  

 
1.  FORMULATION OF THE PROBLEM 

( ) ( ) ( )wNlvLuL 11211 −=+

Let us consider free geometrically nonlinear vibrations of laminated plates of a symmetric 
structure in relation to the middle plane, which is subjected to a static load in its plane. It is assumed 
that the delamination of the layers is absent. The mathematical formulation of the problem is made in 
the framework of the classical theory based on the Kirchhoff – Leave hypotheses. Let us consider the 
movement equations in operator form [1, 6]:  
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where u,v,w are displacements of the plate in directions Ox, Oy and Oz respectively. In expressions 
(1)-(3) the differential operators iij NlL ,  3,2,1, =ji  are defined as follows: 
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Here ,xN  ,yN  xyN – normal and tangential forces in the middle plane, which are determined for 
multilayer plates by known formulas shown below in the matrix form [1]: 
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In these formulas the deformation components ,xε  ,xyε  ,yε  are defined as  
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The values 1m and ijij DC ,  ( )66,26,16,12,22,11=ij , are defined as follows: 
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In general, when the anisotropy axes do not coincide with the axes Ox and Oy elastic constants 

of the s-layer ( )( )6,2,1, =jiB s
ij  are expressed through the elastic constants of the initial system 

( )( )6,2,1,~ =jiB s
ij  by the known formulas [1]. 

The system of equations is supplemented by boundary conditions, the expressions of which are 
determined by the way of fixing and loading of the plate boundary. 

On the loaded part of the border the boundary conditions for the displacements in the plane are 
defined as 
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where nn TN , - normal and tangential forces in the middle plane. Let us present them as follows:  
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2. METHOD OF SOLUTION 

The proposed method consists of several stages. 
1st
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 stage. To determine the subcritical state of the plate it is necessary to find the functions that 
satisfy the following equations 
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and non-homogeneous boundary conditions 
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It is impatient to note that this problem can be regarded as a plane problem of elasticity theory 
which variational formulation is reduced to finding the minimum of the following functional:  
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where 1Ω∂  is part of the border loaded by the external forces 
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On the whole this problem may be solved by RFM. 
2nd

,maxmax ТПJ −=

 stage. A linear problem of the plate vibrations compressed by static load in the middle plane 
may be solved by Ritz method as a result of functional minimization:  
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where maxТ is kinetic energy of the plate and maxП  is maximum potential energy of the plate: 

( )∫
Ω

Ω++= dwvumТ L 222
2

1
max 2

ω  

+++= ∫∫
Ω

)[(
2
1

max xyxyyyxx MMMП χχχ  

.)]),())(,())(,(( 11
)(2

11
)(2

11
)( dxdy

y
w

x
wvuN

y
wvuN

x
wvuNp L

xy
L

y
L

x ∂
∂

∂
∂

+
∂
∂

+
∂
∂

+  

 



372 

where Lω is the natural frequency, corresponding to a given load p, ,xM ,yM xyM are bending and 
shear moments, which are defined for multilayer symmetric plates as follows:  
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In these formulas the deformation components ,xχ  ,xyχ  yχ  are defined as 
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Thus, the solution of the linear vibration problem is reduced to an eigenvalue problem with the  
appropriate boundary conditions. 

3rd ( )wvu ,, stage. Let us present unknown functions  in the following way: 
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Here  ( )yxw ,1  is eigenfunction corresponding to the natural frequency ,Lω  and ( )22 ,vu  have 
to satisfy the non-homogeneous linear system of the differential equations: 
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The solution of this problem may be reduced to the variational problem of the functional 
minimum determination: 
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Substituting expressions (11) into equation (3), and using the Bubnov-Galerkin method, we can 

obtainthe following ordinary nonlinear differential equation of the Duffing’s type:   
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where Lω is the  natural  frequency of the linear plate vibration and β  defined as follows:  
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4th 
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 stage. The resulting differential equation (12) can be solved in different ways. We are 
appling the Bubnov-Galerkin method. Let us present the solution as follows  

                                                       (13) 
where A is amplitude and Nω  is nonlinear vibration frequency. Applying Bubnov-Galerkin method to 
equation (12), we obtain the relationships between the ratio of linear and nonlinear fundamental 
frequencies LN ωων /=  and amplitude A as follows  
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3. NUMERICAL INVESTIGATION.  

Let us apply the proposed approach to the study of nonlinear vibration of the single-layer 
orthotropic plate (Fig. 1). Let us consider the follow boundary conditions: 
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Figure 1. The single-layer orthotropic plate 

 
For the given conditions the structure of solution [3,4] for u, v, w  satisfying only the main boundary 
conditions takes the form of 

ii Pu = , 2+= ii Pv , 2,1=i , 5Pw ⋅ω= ,                                            (15) 
where ( ) 0, =ω yx  is the equation of the whole boundary domain. The function ( )yx,ω  is defined as 
follows 
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The symbols 00 ,∨∧  denote R-operations [3, 4].  In (15) iP  are indefinite components of the structure 
that are presented as an expansion in a series in a complete system (in this presentation power 
polynomials are used).  
 Calculations are carried out for glass – epoxy plate (E1 / E2 = 3, G / E2 0.25 1 =ν = 0.6, ) with 

1/ =ab , 1/ 2
32 =Ehpa . The effect of a cutouts size on amplitude-frequency characteristics has been 

investigated for 05.0,1.0,2.0/ =ar , 45.0,4.0,35.0/ =ad , 1.0/ =al  (Fig. 2). In Fig. 3 amplitude-
frequency characteristics depending on the disposition of cutouts are presented. For such study we use 
various values of ratio 3.0,2.0,1.0,0/ =al  at fixed value of ratios 1.0/ =ar , 4.0/ ==ad ). The 
analysis of the obtained results allows draw a conclusion that the size of given plate cutouts affects the 
characteristics considered much stronger than its disposition. 

         
Fig. 2.  Amplitude-frequency characteristics          Fig. 3. Amplitude-frequency characteristics 
           versus to cutouts size.                                           versus to cutouts disposition.  
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CONCLUSIONS 

 The method of nonlinear vibration research of in-plane loaded laminated plates with a 
complex form is proposed. Due to the application of R-function theory in combination with 
variational methods the investigation of the movement equation is reduced to studying ordinary 
differential equation of the Duffing type. Using the offered method and the created software the 
dynamic behavior of plate with cutouts subjected by static load is studied. The effect of cutout size 
and cutout disposition on amplitude-frequency characteristics is analyzed.   
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