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Forced vibrations of the disk elastic rotor on nonlinear flexural base for a 
case of internal resonance are considered. The gyroscopic moments are 
taken into account. The Shaw-Pierre conception of nonlinear normal 
vibration modes and the modified Rausher method are used to construct 
resonance forced vibrations.  

 
 

INTRODUCTION  
Rotor systems are important elements of machines and mechanisms. Different nonlinear effect 

must be taken into account in analysis of dynamical behavior of such systems. Moreover, internal 
resonances in the rotor systems dynamics must be taken into account too. One selects some principal 
publications on the rotor nonlinear dynamics. V.A. Grobov [1] suggested apply asymptotic methods 
to analyze the rotating shafts dynamics. A.P. Filippov [2] analyzed non-stationary vibrations of one 
disc rotor with nonlinear flexible base assuming that one support is nonlinear. V.V. Bolotin [3] took 
into account nonlinear inertia in the model of one disk rotor. Different models of rotor vibrations and 
analysis of motions stability are treated in the book [4]. Non-stationary vibrations of rotor interacting 
with limited power supply are considered in [5]. In [6,7] it is investigated the periodic and chaotic 
vibrations in the model of the Laval-Jeffcott rotor with two degree-of-freedoms with the internal 
resonance phenomena, using asymptotic method. Note that in many publications mostly the simplest 
model of the Laval-Jeffcott rotor is considered, when for the centrally mounted disk, the system is 
symmetric and the first two fundamental translational and rotational motions are decoupled and can 
be considered separately.  

The Shaw-Pierre nonlinear modes of rotors accounting gyroscopic terms are considered in the 
paper [8]. In the present paper nonlinear forced vibrations of rotor taking into account gyroscopic 
effects and nonlinear flexible base are considered. An asymmetrical disposition of the disk in the shaft 
is considered. The Shaw-Pierre nonlinear normal modes (NNMs) together with the modified Rausher 
method are used to construct resonance vibrations. In contrast to results presented in [8], here it is 
constructed NNMs is a system having the internal resonance. This situation is always realized in the 
rotor system with the isotropic-elastic shaft and the isotropic-elastic supports.    
 
1.  THE SHAW-PIERRE NONLINEAR NORMAL VIBRATION MODES    

Nonlinear normal vibrations modes (NNMs) are a generalization of the normal vibrations of 
linear systems. In the normal mode, a finite-dimensional system behaves like a conservative one 
having a single degree of freedom [9,10]. A generalization of the NNMs conception to non-
autonomous systems is possible too. In [11,12] the authors reformulated the concept of NNMs for a 
general class of nonlinear discrete oscillators. The analysis is based on the computation of invariant 
manifolds of motion on which the NNMs take place.     

 To use this approach the original ODE system must be presented of the next standard form,  
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where T
N1 }xx{x =  is a vector of the generalized coordinates, T

N1 }yy{y =  is a 

vector of the generalized velocities, and T
N1 }ff{f =  is a vector of the forces. One chooses a 

couple of new independent phase variables (u, v), so-called master coordinates, where u is some 
dominant  generalized coordinate, and v is the corresponding generalized velocity. By the Shaw-
Pierre approach, the nonlinear normal mode is such regime when all generalized coordinates and 
velocities are univalent functions of the selected couple of variables, named master coordinates. 
Denoting these master coordinates as the coordinate and velocity with the index 1, one writes the 
nonlinear normal mode of the form:     

                  )1(),(),,(,, 11 ≠==== ivuYyvuXxvyux iiii                                     (2) 
Computing derivatives of all variables in the system (1), and taking into account that u = u(t) 

and v = v(t), then substituting the obtained expressions to the system (2), one has the following 
system of partial derivation equations:  
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 One presents the system solution in the form of the power series by new independent 
variables  u and v:  
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The series (4) are introduced to equations (3), then coefficients in terms of the same degree by 

independent variables, are equated. So, a system of recurrent algebraic equations can be written. 
Coefficients of the series (4) can be determined from these equations, and, as a result, the 
corresponding nonlinear normal mode is obtained. 

In a case of internal resonance it can observe an interaction of two NNMs. So, four phase 
coordinates are active, and they must be chosen as master coordinates. In this important case all other 
phase coordinates are presented as univalent functions of the selected four coordinates. Namely this 
situation occurs in the problem of the rotor dynamics which will be considered later.   

 
2.  USE OF THE MODIFIED RAUSHER METHOD TO CONSTRUCT FORCED VIBRATION 
MODES 
 One considers the nonlinear dynamical system under an external periodical excitation, which is 
written in principal (normal) coordinates of the following standard form:   
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where { }1 2, ,..., T
Nq q q q= , T

Nssss },...,{ 21= . It is assumed that the frequencies 1ν  and 2ν  are 

close, and they are close to the external frequency, Ω . In this case two active coordinates, 2,1q , and 

two corresponding velocities, 2,1s , may be taken as independent master coordinates to construct 
expansions which are analogous to the series (4).  

One assumes that there is a representation of the master coordinates in the form of the following 
Fourier series:   
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  When slave coordinates are essentially smaller than the master coordinates, we can obtain 
such trigonometric expansions from the next ODE system:  
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One has from here, using some trigonometric transformations that  

                                 ( ) 2 2
1 1 2 1 2 2 3 2 5 1 6 1cos ...t q s q s q sα α α α α αΩ = + + + + + +  (8) 

This relation is substituted to right parts of the equations (5); it corresponds to the principal 

idea of the Rausher method. As a result, the autonomous system is obtained:  
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In the system (9) the NNMs by Shaw-Pierre can be constructed from the equations similar to 

(3). But in a case of the internal resonances the four independent coordinates are used, and the 

corresponding equation in partial derivatives must be used. These equations are not presented here. 

Solution of these equations is obtained in form of the Taylor series:  
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Then the expansions (10) are substituted to the system (5). It permits to reduce the n-DOF 
system to the two-DOF one. Two master coordinates are obtained from this system. So, the solution 
(6) is made more precise.  

The pointed out series of operations can be repeated some times to reach a necessary exactness.  
As some simple example, a system of three oscillators, connected by elastic springs, one of 

them is nonlinear, is considered. Equations of motion are the following:    
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It is assumed that two vibration modes of the lineariazed system (11) have close frequencies. 
Use of the proposed approach permits to construct NNMs of the non-autonomous system (11). A 
transformation to principal coordinates 321 qqq ,,  is made, where two first coordinates correspond to 
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modes with close frequencies. The frequency response of the system is obtained. In the Fig.1 the 
frequency response for the first harmonic of the principal coordinate 3q  is shown. The entire line is 
obtained by the NNMs approach, and the dashed line is obtained by the harmonic balance method. 
Numerical simulation confirms a good exactness of the proposed approach too.  

 

 
Fig. 1. Frequency response for the first harmonic of the generalized coordinate 3q  of 

the system (11).  
 

3. PRINCIPAL MODEL OF THE ROTOR NONLINEAR DYNAMICS.  
A model of the rotor dynamics with an asymmetrical disposition of the disk in the shaft is 

considered. Gyroscopic effects and nonlinear flexible base are taken into account. The fixed and 
moving coordinate systems and positional angles are shown in the Fig. 2. 
 

     
 

Fig.2. Principal model of the rotor dynamics. Fixed and moving coordinate systems.  
 

 Equations of the rotor motion can be written of the following form:     
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where 221211 ccc ,,  are static coefficients of shaft stiffness; l  is the shaft length; 21 ll ,  are distances 

of the disk up to left and right supports, correspondently; 2211 l/lh;l/lh == ; )()( , 1
y

1
x cс  are 

coefficients which characterize linear terms in the left support restoring force; )()( , 1
y

1
x kk  are similar 

coefficients for the right support; )()( , 2
y

2
x cс  are coefficients which characterize cubic terms in the left 

support restoring force; )()( , 1
y

1
x kk  are similar coefficients for the right support; β  is a coefficient of 

damping in supports; 21 ρρ , are coefficients of damping during the disk motion; m is the mass of the 

disk; ε  is an eccentricity of the disk mass center.  
 
4.  FORCED VIBRATIONS IN ROTOR DYNAMICS. 

The procedure, which was described in the Section 2, is used. As a result, nonlinear normal 
modes of the non-autonomous rotor system are obtained.  

Numerical simulation of the rotor forced dynamics is made for the following values of the 
system parameters : m=15.3 kg, Ie=0.22 kg·m2, Ip=0.441 kg·m2, l=1 m, h1=1/3, h2=2/3, cx

(1)=cy
(1)= 

kx
(1)=ky

(1)=9.8·105 N/m, cx
(2)=cy

(2)=kx
(2)=ky

(2)=1.96·1012 N/m3, ε=10-4 m, β=3000 N·s/m, ρ1=1.5 
N·s/m, ρ2=1.5 N·s.  Elastic shaft is described by following parameters: the Young’s modulus 
E=2.1·1011

99220.=ω
 Pa, the cross-section radius r=0.015 m, the shaft is considered to be massless.

 
The phase trajectory of the obtained NNM for , where ω  is a ratio of the 

frequency of external excitation and the first frequency of the linearized system, is presented in the 
Fig. 3. Here the analytical solution is shown by points, and the numerical simulation is shown by the 
entire line.  

 

 
Fig. 3.The NNM phase trajectory. Analytical solution (points) and numerical simulation 

(entire line).  
 

 A comparison of the analytical and numerical forced NNM in time for the same ratio of the 
external frequency and the first linear frequency is presented in Fig. 4, where points correspond to the 
analytical results, and the entire line corresponds to the numerical simulation.   
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Fig. 4. Presentation of the NNM in time for the non-autonomous rotor system. Points 
correspond to the   analytical solution; entire line corresponds to numerical simulation.  

 
CONCLUSIONS 

 The forced vibrations of the non-autonomous rotor system for a case of the internal resonance 
is obtained by use of the nonlinear normal modes conception and the generalized Rausher method. 
Numerical simulation confirms an efficiency of the proposed analytical procedure.    
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