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The analysis of the free linear and geometrically nonlinear vibrations of 
the turbomachinery blades is presented in this paper. The results for 
the linear vibrations analysis are compared with the experimental ones. 
The vibrations in the case of multiple internal resonances are 
investigated. The analysis of nonlinear vibrations is carried out using 
the combination of nonlinear normal modes and the harmonic balance 
method. 

 
INTRODUCTION  

 The turbomachinery blades are one of the most important real applications of the shallow 
shells theory. Therefore, a lot of studies dial with the blade dynamics. Didkovskii [1] analyzed the 
parametric vibrations of turbomachinery blades in gas flow. The sufficient conditions of dynamical 
stability are obtained in this paper. The papers of Ross [2], Hoa [3] are devoted to linear vibration 
analysis of blades, which are modeled by shells. Venkatsan, Nagaraj [4] studied nonlinear vibrations 
of rotating blades. They came to the conclusion, that the frequency response can be hard or soft. The 
data of finite element analysis of turbomachinery blades are compared with experimental results in 
[5]. The vibrations of turbine blades under the action of longitudinal time periodic force have been 
considered by Chen, Peng [6]. Using geometrically nonlinear theory and the finite element method, 
the blade nonlinear model is obtained. Liew, Lim [7] used energetic approach to study linear 
vibrations of shallow shells with rectangular base and different Gaussian curvature. Mohamed Nabi 
and Ganesan [8] compared the beam and plate models of turbomachinery blades. They came to the 
conclusion that the plate models are better. The vibrations of shallow anisotropic blades are treated by 
Abe, Kobayashi, Yamada [9]. They used the Rayleigh-Ritz method to analyze linear vibrations. The 
finite-degree-of-freedom model is obtained by Bubnov-Galerkin procedure. Nonlinear vibrations of 
hydroturbine blades, which are modeled by pre-twisted shell with variable thickness and ring-shaped 
base, are treated in [10, 11]. The dependence of eigenfrequencies and eigenmodes on pre-twisted 
angle and thickness are investigated. Choi, Chou [12] analyze the blade vibrations taking into account 
the shear. The influence of shroud on vibrations is considered.  

In this paper the free geometrically nonlinear oscillations of the turbomachinery blades are 
analyzed. The blades are considered as shallow shells of variable thickness and double curvature. 
Compressor blade and blade of hydroturbine are studied. The R-function method and the Rayleigh-
Ritz approach are used collectively to obtain eigenmodes of linear vibrations. Nonlinear vibrations of 
shells are approximated by using these eigenmodes. Single-mode and multimode vibrations are 
studied. The backbone curves are presented and the stability of motions is analyzed. 
 
 
 
1. METHOD OF ANALYSIS  

The blades are modeled by shallow shells with variable thickness and double curvature. Thin 
blades are considered, so classical Love theory is applied. The Rayleigh-Ritz method is used to 
determine the eigenfrequencies and eigenmodes of linear vibrations. The potential energy of the shell 
can be presented as [13]: 
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where γεε ,, 21  are components of membrane strains of shell middle surface; τχχ ,, 21  are 
components of bending deformations of middle surface; A  and B  are Lamé ( )yxh ,coefficients;  is 
a variable shell thickness; µ,E  are Young’s modulus and Poisson’s ratio. The kinetic energy of the 
shell has the following form: 
 

( ) ( )∫
Λ

++= dydxAByxhvuwT ,
2

222


ρ
, 

 
where ( ) ),,(,,, tyxvtyxu , ( )tyxw ,,  are displacements of the middle surface points in the yx, , z  
directions, respectively; ρ  is shell material density. 

Nonlinear vibrations of the blade are approximated by eigenmodes of linear vibrations. Then 
the shell bending vibrations ),,( tyxw  can be presented as:  
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where Niyxwi ,1),,( =  are normalized eigenmodes of free linear vibrations. The displacements u  
and v  can be presented as: 
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where Niyxui ,1),,( =  and Niyxvi ,1),,( =  are in-plane eigenmodes of vibrations. Using the 
kinetic and the potential energy, the Lagrange equations are derived. If the eigenfrequencies of 
longitudinal vibrations are significantly higher, than the eigenfrequencies of the bending vibrations, it 
is possible to neglect the in-plane inertial terms. The dependences of NN 31,...,ηη +  on Nηη ,...,1  can 
be derived from the last N2  Lagrange equations. The solution of the linear algebraic equations is 
substituted into the system of first N  ordinary differential equations. As a result the system of N  
ordinary differential equations with respect to Nηη ,...,1  is derived. After the transformation to the 
dimensionless modal variables Nξξ ,...1  the system has following form: 
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where 
1Ω

Ω
=Ω k

k  are dimensionless eigenfrequencies. 

The Shaw-Pierre nonlinear modes [14, 15] are used to analyze the vibrations of the finite-
degree-of-freedom system (30). Lat us suppose, that the general coordinates Mξξ ,...,1  is active. Then 
the invariant manifolds of the system with internal resonances can be presented as [15]: 
 

( ) ( ) NMkYX MMkkMMkk 2,..1,,,..,;,,.., 1111 +=== ξξξξξξξξξξ                       (4) 
 

Nonlinear modes (4) satisfy the following partial differential equations: 
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The functions kk YX ,  can be found as polynomials with respect to MM ξξξξ  ,,.., 11 . Now the 

equations (4) are substituted into the first M equations of the system (3). As a result, the system of M 
ordinary differential equations describing the motions on nonlinear mode is obtained: 
 

( ) ( )( )MMNMMMMkk XXf ξξξξξξξξξξξ  ,,..,,...,,..,,,.. 1121111 += , Mk ,..1=  
 

These equations can be studied by harmonic balance method, multiple scales or other methods. 
The stability of motions in this work is analyzed by the Floquet-Lyapunov theory [16]. 
 
2. VIBRATIONS OF THE COMPRESSOR BLADE  
 

The blade is modeled by pre-twisted shallow shell with trapezoidal base and variable thickness 
(Fig 1.).  

 
Fig. 1 Sketch of blade 

 
The boundary conditions on the clamped edge can be presented as: 
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The node lines of the first eigenmodes are shown on the Figure 2. The results of the 

eigenmodes calculations (Fig. 2) are close to the data from [17, 18]. As follows from the calculations, 
the following internal resonances exist in the system: 54 Ω≈Ω ; 5343 2;2 Ω≈ΩΩ≈Ω .  

 
Fig. 2 Nodal lines vibrations eigenmodes 

 
The first five eigenmodes are used in the expansions (1, 2) to obtain the finite degree-of-

freedom model of the blade nonlinear vibrations. The nonlinear dynamics of this system is analyzed 
by nonlinear modes with 543 ,, ξξξ  as independent variables. Figures 3-4 show the backbone curves 
on this invariant manifold. Unstable motions are shown by dotted lines. The multimode (Fig. 3) and 
single-mode motions (Fig. 4) are observed. The multimode motions can be stable (Fig. 4).  
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Fig. 3 The backbone curves of the vibrations with dominant general coordinate 3ξ , which 

excite autoparametrically the motions 5ξ  

 
Fig. 4 The vibrations of the shell with dominant general coordinate 5ξ  

 

3.  THE VIBRATION OF HYDROTURBINE BLADE 

The blade of the axial flow turbine is described by the double-curved shallow shell with 
variable thickness. The shell base has a shape of ring sector, which has one rounded angle (Fig. 5). 
The node lines of the first eigenmodes are shown on the Figure 6, which is close to the known 
experimental and calculated results [19]. 

 
Fig. 5 Base of the shallow shell 
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Fig. 6 Nodal lines of eigenmodes 

 
The free nonlinear vibrations close to the first two eigenfrequencies are analyzed. In this case, 

three terms 3=N  are enough in the expansion (1-2). Two invariant manifolds with independent 
variables 1ξ  and 2ξ  are considered. Figures 7-8 show the backbone curves.  

 

 
Fig. 7 The backbone curves of vibrations near the first eigenfrequency 

 
CONCLUSIONS 

The analysis of free vibrations of turbomachinery blades are presented in this paper. The 
different modes of blades’ nonlinear vibrations are described by hard backbone curves. It is 
mentioned that the amplitudes of stable vibrations of blade edges are in excess of blade thickness in 
this region. Therefore, nonlinear theory is required for description of blade dynamics. It is shown, that 
due to the presence of the internal resonances stable multimode vibrations exist in the system. 

 

 
Fig. 8 The backbone curves of vibrations near the second eigenfrequency 
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