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ABSTRACT  

Donnell’s equations are used to predict nonlinear vibrations of 
cylindrical shells, which are excited by parametric dynamical load. The 
finite degree-of-freedom dynamical system of cylindrical shells is 
derived. The nonlinear modes of the shell with dissipation and without 
one are analyzed by harmonic balance method. These nonlinear 
modes correspond to the standing waves in the shell. Traveling waves 
are analyzed in detail. 

 
 

INTRODUCTION 
Thin-walled structures are widely used in aerospace, nuclear, civil and mechanical engineering. 

Longitudinal periodic loads usually act on the shells and leads to complex dynamical behavior of the 
systems. Many efforts were made to study this behavior. Parametric oscillations of simply supported 
cylindrical shells are modeled by two interacting modes (asymmetric and axisymmetric ones) in [1]. 
Donnell’s shallow shell equations were used to study parametric oscillations of cylindrical shells [2] 
and the fundamental role of axisymmetric modes in evaluating the parametric instability bounds is 
treated. The effect of initial imperfections on parametric oscillations of simply supported cylindrical 
shells was studied by Koval’chuk and Krasnopol’skaya [3]. Kubenko et al. [4] obtained theoretically 
and experimentally the frequency response and the region of the main parametric resonance of simply 
supported cylindrical shells. Pellicano et al. [5] analyzed nonlinear oscillations and dynamic 
instability of simply supported cylindrical shells under the action of longitudinal dynamic forces. The 
dynamic stability of cylindrical shells under the action of both static and periodic axial loads is treated 
in [6]. Analysis of nonlinear modes of cylindrical shells, which are described by three mode model, is 
considered in the paper [7]. Detailed reviewer of cylindrical shell dynamics is presented in [8]. 

Nonlinear dynamics of cylindrical shells in the case of the main parametric resonance is treated 
in the present paper. Cylindrical shells have dense frequency spectrum. Therefore, the case, when the 
three eigenfrequencies of conjugate modes are close, is considered. This case occurs frequently in 
shell dynamics. These three conjugate modes are taken into account in analysis of the main parametric 
resonance. 
 
1.  PROBLEM FORMULATION AND MAIN EQUATIONS 

The simply supported cylindrical shell without imperfections is considered. The following time 
periodic distributed parametric load acts on the shell (Fig.1): 
 

tNtN x  2cos)( 1 , 01  constN                                               (1) 

 
where   is an excitation frequency. The vibrations of shell have moderate amplitudes. Then the 
strains are small and displacements are moderate and the strains- displacement relations are nonlinear. 
The strains and stresses satisfy the Hooke’s law. In this case the following Donnell’s equations 
describe the shell vibrations adequately [1, 5]: 
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where w  is displacements of the middle surface points in the radial directions; x , y  are longitudinal 

and circumferential coordinates; R ,   are mean shell radius and material density; ,E  are Young’s 

modulus and Poisson’s ratio; F  is an in-plane stress function;   23 112/  EhD  is a flexural 
rigidity. 
 

 

Fig. 1 Cylindrical shell 
 

The conjugation vibrations modes rxsysincos  and rxsysinsin  have the same frequencies of 
cylindrical shells vibrations. If a shell performs nonlinear vibrations, these modes can be excited 
jointly. As follows from the shell analysis [9], wide class of cylindrical shells has three close 
eigenfrequencies of conjugate modes. In future analysis the main parametric resonance is considered 

6,...,2,1;  ii , where 3,1;212   iii  are equal eigenfrequencies of conjugate modes. 

Three conjugate modes are taken into account in the expansion of the displacements in the radial 
directions. Then the dynamic flexure w  can be presented as: 
 

  8
2

7

3

1
212 sinsinsincos fxrfrxysfysfw

i
iiii  


                            (3) 

 
where ;3,2,1;/;/  iLmrRns ii  in  is numbers of waves in circumference directions; m  is a 

number of half-waves in x  direction. The summand xrf 2
7 sin  describes asymmetry of dynamic 

flexure with respect to a middle surface. The term 8f  describes displacements in radial directions of 

shell face sections points. This term does not depend on circumference coordinate y . Therefore, the 
face sections can “breathe” [4]. 

The in-plane stress function F  is determined from the second equation of the system (2), 
satisfying the periodicity conditions of the circumference displacements. The stress function is 
substituted into the first equation of the system (2) and the Galerkin method is applied to the resulted 

equation. Assuming that 07 f , 08 f  [11], the finite-degree-of-freedom shell model with respect 

to the dimensionless variables and parameters has the following form: 
 

    6,...,2,1,0,...,,..., 6161
2  ifNffGffRfff ixiiiiiii

          (4) 

 
2.  NONLINEAR MODES AND HARMONIC BALANCE ANALYSIS 

The nonlinear dynamics of the system (4) is analyzed in this section. The equations 
 

,212 ii ff  3,2,1i                                                            (5) 
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are exact solutions of the system (4). If the solutions (5) are substituted into (4), the following 
dynamical system is derived: 
 

    5,3,1,0,,
~

,,
~

531531
2  ifNfffGfffRfff ixiiiiiii

            (6) 

 
The solutions (5) are called nonlinear modes. These nonlinear modes are straight lines in 

configuration space. The dynamical system (6) describes the motions on nonlinear modes. 
The harmonic balance method is used to study the motions on the nonlinear modes (6). As the 

nonlinear modes for the main parametric resonance are considered, the motions are presented as: 
 

    5,3,1,sincos  itBtAf iii                                              (7) 

 
Now (7) is substituted into (6) and the amplitudes of harmonics  tcos  and  tsin  are 

equated. As a result the following system of nonlinear algebraic equations is derived (values ij , i  

depend on the shell parameters): 
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2
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2
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jjijiiiii  (8) 

 
The following groups of solutions exist in the system (8): 

 

1.1). ;0;0;0 531  iBAAA  1.2). ;0;0;0 531  iABBB  

2.1). ;0;0;0 513  iBAAA  2.2). ;0;0;0 513  iABBB  

3.1). ;0;0;0 315  iBAAA  3.2). ;0;0;0 315  iABBB  

4.1). ;0;0;0;0 351  iBAAA  4.2). ;0;0;0;0 351  iABBB  

5.1). ;0;0;0;0 531  iBAAA  5.2). ,0;0;0;0 531  iABBB  5,3,1i         (9) 

 
Now every group of solutions is considered separately. Fixing the value   with a certain step 

size, the solutions are determined from the system of nonlinear algebraic equations (8). The solutions 
(1.1 – 4.2) can be determined analytically. The solutions (5.1, 5.2) are analyzed numerically by the 

Newton method with respect to 1A , 1B , 3A , 3B , 5A , 5B . 

Now the nonlinear vibrations of cylindrical shells are considered accounting energy dissipation. 
Then the linear damping is added into the system (4). The resulted system has the following form: 
 

    .6,...,2,1,0,...,,..., 6161
2  ifNffGffRffff ixiiiiiiiii

    (10) 

 

Note, that the equations ;212 ii ff  3,2,1i  are exact solution of the system (10). These 

solutions correspond to nonlinear modes. Moreover, these nonlinear modes coincide with the 
nonlinear modes of the system without dissipation (6). The harmonic balance method is used to study 
these nonlinear modes and the system motions are presented in the form (7). Then the system of 
nonlinear algebraic equations with respect to amplitudes of harmonics (7) is derived as: 
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The following groups of solutions exist in the system (11): 
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1). ;0;0;0;0 535311  BBAABA  2). ;0;0;0;0 515133  BBAABA  

3). ;0;0;0;0 313155  BBAABA  4). ;0;0;0;0;0;0 335151  BABBAA  

5). 0;0;0;0;0;0 531531  BBBAAA                              (12) 

 
The solutions (12) of the system (11) are analyzed numerically. Setting the parameter   with a 

certain step, the system (11) are solved by the Newton method.  
The traveling waves for the main parametric resonance, which are described by the system (10), 

are considered taking into account dissipation. The harmonic balance method is used to study these 
motions and the system vibrations are presented as: 
 

   ,sincos tBtAf iii      ,cossin1 tBtAf iii  5,3,1i              (13) 

 
Then the amplitudes of harmonics (13) are determined from the following system of nonlinear 

algebraic equations: 
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The following groups of solutions exist in the system (14): 

 

1). ;0;0 535311  BBAABA  2). ;0;0;0 335511  BABABA  

3). 0;0;0 335511  BABABA                                    (15) 

 
Altering the frequency of the parametric load  , the system (14) is solved by the Newton method. 

In order to analyze stability of periodic vibrations, the system of variational equations is 
derived and fundamental matrix is calculated numerically. Then the multipliers are obtained from the 
fundamental matrix [10]. 

 
3.  NUMERICAL ANALYSIS OF VIBRATIONS 

The shell with the parameters (16) [4] is considered. The frequencies of shell linear vibrations 
are also presented ( srad ) (16). 
 

N/m105.1,kg/m7850,3.0,N/m101.2m,2.0m,4.0m,002.0 6
1

3211  NERLh  

5.5289;3.4214;2.3437;0.3165;3.3745;3.5636 1,81,71,601,51,41,3   (16) 

 
where the first subscript indicates the wave numbers in circumference direction and the second 
subscript shows the number of half-waves in x  directions (Fig.1). In future nonlinear analysis the 

modes with the following parameters are taken: 41 n ; 52 n ; 63 n ; 1m . 

The dependence of the vibrations amplitudes 1A , 1B  on the frequency   are presented on the 

frequency response (Fig.2a). The stable solutions are denoted by solid lines and the unstable solutions 

are shown by dashed lines. The branches of the frequency response (Fig.2a) are denoted by )1(
1A , 

)1(
1B  for the cases (1.1, 1.2) of the equations (9). In this case only one pair of the conjugate modes 

from the expansion (3) is active. The branches )2(
1A , )2(

1B  (Fig.2a) describe the motions with two 

pairs of conjugate vibrations modes. These solutions correspond to the cases (4.1) and (4.2) of the 

equations (9). The branches )3(
1A , )3(

1B  of the frequency response show the vibrations with three pairs 

of conjugate modes, which correspond to the cases (5.1) and (5.2) of the equations (9). 
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The direct numerical integrations of the system (6) at different values of frequency   are 
carried out to confirm the analytical results. Using such approach, only stable solutions are derived. 
The data of the calculations are shown by small squares on Fig.2a. The results of the direct numerical 
integration are very close to the data, which are obtained by harmonic balance method. 

Carrying out numerical integration on long time interval, the periodic solution is considered 
unstable, if the numerical trajectory escapes from the considered one to another trajectory. To study 
stability of the parametric vibrations the direct numerical integration of the differential equations (4) 

is carried out on the time interval  12000;0 t . The initial conditions are determined from the 
equations (7, 14).  

The dynamics of the system with dissipation (10) on the nonlinear modes is presented on the 
frequency response (Fig.2b). The numerical analysis of the traveling waves is carried out. Fig.3 shows 
the frequency response of the traveling waves. 

 

   

                                          a)                                                                             b) 

Fig. 2 Frequency response of parametric vibrations on nonlinear mode of the system a) 

without dissipation, b) with dissipation 

 

Fig. 3 Frequency response of the traveling waves of the system with dissipation 

 

CONCLUSIONS 
One and two conjugate modes approximations of shell vibrations are not enough to predict 

dynamics of wide class of cylindrical shells. This is explained by closeness of the eigenfrequencies of 
the different conjugate modes. In this case only many modes models of shells describe the parametric 
vibrations adequately. The following vibrations are analyzed in this paper: a) one pair of conjugate 
modes is active; b) two or three pairs of conjugate modes are active. 

Nonlinear modes, which are straight lines in a configuration space, are observed for many 
modes shells dynamics. We stress, that the same nonlinear modes exist both in the system without 
damping and in the system with damping. The existence of such normal modes is explained by cyclic 
symmetry of cylindrical shells.  

Nonlinear modes and traveling waves are some solutions of the dynamical system (4). The 
traveling waves are described by the equations (13). As follows from the results of the analysis, the 
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normal modes and traveling waves exist in the frequency bands  6.1;1  and  8.1;1.1 , 

respectively. Thus, the frequency band   with two kinds of motions exists. Any one of these motions 
has a basin of attraction. Therefore, if the initial conditions belong to the basin of attraction of 
nonlinear mode or traveling waves, then nonlinear mode or traveling waves take place. 

All frequency responses of nonlinear modes and traveling waves are qualitative similar. This is 
explained by similarity of the systems of nonlinear algebraic equations with respect to amplitudes. 
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