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The continual nonlinear wave equations are derived for the rotational 
excitations of the molecules in wide energy interval: from equilibrium 
through rotational melting point to rotational disordered phase. 
Dispersion is considered to be small. Nonlinear oscillations are described 
by the coordinate along the "valleys" of the effective potential. Local 
normal coordinates are introduced. Linear equation describes waves of 
the stiffer normal mode. Nonlinear Sin-Gordon type equation is derived 
for waves of the softer mode in wide energy interval. The nonlinear wave 
solutions are analyzed. 

 
 

INTRODUCTION  
An analytical description of the molecular rotor chain dynamics and thermodynamics is 

developed for low and high energy intervals [1]. The problem is to create theoretical description in the 
middle range of energies, especially in the vicinity of the point of orientational melting. 

Adsorbates [2] or crystals with low-dimensional motives are real 1D and 2D structures. Chain 
models are necessary stage of investigation of dynamics and thermodynamics of crystals [3], 
nonlinear lattices [4]. Complexity of models even for 1D linear molecular chain requires some 
approximations: a model potential and 1D rotation and very hard translational potential, so translation 
vibrations are frozen and they can be neglected [2,5]. The potential energy of the molecular chain 
with realistic quadrupolar potential [5] can be written as [6-9]: 
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Here Q is a quadrupolar moment of a molecule, R is a distance between molecules, mφ is an angle 
between the principal axis of a molecule and the chain axis. The chain energy (1) has minimum [6,7] 
for the molecules' alternating ordering (two sublattices) at the angles: 
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where j,m,n=0, ±1, ±2,..., index m=2n  (m=2n+1) defines even (odd) site. 

Lagrangian of the system is L=K-U. Here U and 
2.
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of the chain, a molecule has a moment of inertia Ji iφ and an angle velocity . Then the Lagrangian 
variation yields system of equations for chain motion: 
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Let us rewrite these equations for two sublattices that have different equilibrium state (2) in the long-
wave limit [8] and introduce new variables for even (φ ) and odd (ψ ) sites. More convenient for 
further analysis is following form of the equations and variables 
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     (4) 

 ;  m pφ ψ φ ψ= − = +  (5) 
 

Here dimensionless time and characteristic frequency are introduced: 0t tτ ω→ = , 2
0 0/ Jω = Γ , 

0 iJ J= . Integral of the rotational motion for the molecular chain can be found [8] for the system (4): 
.ef k pW W W= +  The integral includes "kinetic" kW and "potential" pW contributions: 

 

 2 21 ( );    4[2 cos cos cos2 cos2 ]
2k pW p m W a p m b m c p= + = + +   (6) 

 
 

 
 

Fig. 1. The potential relief pW in a quadrupolar molecular chain. (left) 3D image. (right) View 
along a valley. (I) Ordered phase. (II) Phase of correlated movements when p is finite, m is 
infinite. (III) Phase of correlated movements when both p and m are infinit. (IV) Completely 

disordered phase. 
 

The rotational excitations demonstrate strong anisotropy in the angle space, easy directions 
("valleys" on the potential) exist [8] (see fig. 1). Excitations that spread along "valleys" do not destroy 
correlation between molecules but a structural data can show rotational disorder (melting). We used 
the strong anisotropy ('valleys') and the normal modes to split equations for linear and nonlinear 
(softer mode) molecular chain oscillations [9]. Nonlinear Schrodinger equation was derived for the 
softer mode, its wave solutions were obtained. 

In the present work, the continual nonlinear wave equations are derived for the rotational 
excitations of the molecules with quadrupolar interaction in wide energy interval: from equilibrium 
through rotational melting point to disordered phase. Nonlinear oscillations are described by the 
coordinate along the "valleys". Local normal coordinates are introduced. Linear equation describes 
waves of the stiffer normal mode. Sin-Gordon equation is derived for the softer mode in wide energy 
interval, their wave solutions are analyzed. 

 
1.  DERIVATION OF THE CONTINUAL EQUATIONS FOR AN INHOMOGENEOUS 
CHAIN. 

The system of equations (3) is a strongly nonlinear and differential-difference. Let us rewrite 
these equations for two sublattices which have different equilibrium state (2), and introduce new 
variables for even (φ2m) and odd (φ2m+1) sites: 
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Here the new variables for even (φ2m) and odd (φ2m+1

1 1;i i i i i im pφ ψ φ ψ+ += − = +

) sites are introduced. Orientation difference in 
the same sublattice is distinguished by account of a site number. 

Let us introduce more convenient variables instead of (5) to account the sites difference: 
 
  (8) 
 
With purpose to organize these variations let us find sum (for p) and difference (for m) of 

equations (7), then write expansion for variables φ  and ψ  around values which form ip  and im . 
After grouping we obtain the continual variables ip p≡  and im m≡ . Then we hold the lowest 
derivations (no more than the second derivation or multiplication of the first ones). As a result the 
system of dynamical nonlinear continual differential equations can be yielded: 
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Here we introduce dimensionless coordinate: 0/x Rξ = . Derivations are /p p ξ′ = ∂ ∂  and 

2 2/p p ξ′′ = ∂ ∂ , and the same formulae for ,m m′ . We suppose that derivations are relatively small: 
;  ;  p p p m m m p m′′ ′ ′′ ′<< << << << << . The attractive feature of the system (9) is symmetry on 

the coordinates ,p m  and the interaction parameters over pair exchange: 
 
 , ,p c m b←→  (10) 
 
Let us discuss general properties of the yielded system of equations (9). It was obtained in 

continuum approximation and describes any nonlinear time-dependent processes in the molecular 
chain. The system has too complicated construction as over the generalized angle coordinates $p$ and 
$m$ as their derivations. In comparison with Landau-Lifshits nonlinear equations that describe 
ferromagnets [10] the space derivations are distributed by especially complicated way: dispersion and 
nonlinear terms are entangled. Integral of the system (9) is. 
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This integral has the same symmetry (10) as the original system of the equations. The integral 

includes only the first derivations in the second powers. This integral can be applied to investigation 
of any nonlinear processes in the molecular chains with alternating ordering. 

 
2.  LOCAL NORMAL COORDINATES AND VARIABLES SPLITTING. 

The integral (11) is not enough for integration of the considered two-dimensional system in 
stationary case. We need two integrals of motion and a set of boundary conditions [11]. Nevertheless 
there is another way to reach integrability. It is the way of the probe orbits [12] when two variables 
are connected by some kind of dependence and energy minimum is reached under some parameters' 
value. Generally, integration in spaces with dimension more than 1 requires excluding of extra 
coordinates. Choice of an orbit is many variant procedure even for power potential [12]. Here we have 
more complicated case when potential consist of trigonometric functions of the variables. Therefore 
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we have to elect some path in the p-m plane that seems to provide minimum of the inhomogeneous 
behavior of the interacting molecular system. This way is not better or worse in comparison with 
construction of a domain wall in ferromagnetic materials [10] in the cases of Bloch (magnetic moment 
rotates in the DW plane) or Neel (magnetic moment rotates at right angle to the DW plane). 

According to topological analysis in long-wave case [8] the potential relief of 1D chain has 
very low narrow valleys. We propose the orbit which coincides with the valley bottom, see Fig.2. 
General equation for the 'valley's' bottom can be obtained from (4): 

 

 
1cos cos ;  

2 7
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Fig.2. Local normal coordinates (curve close to a sinusoid and rectilinear) and relief of 
a bottom of a valley. The scales on axis are identical. 

 
Accounting values of a and c we have | cos | 1p β≤  . So condition / 2p j constπ π+   is 
satisfied at any 'valley's' bottom. For b and c evaluation gives / 3 / 35 1b c =  . Other small terms 
contain 2 2/ 4 1a cα =  . Relation (12) allows rewrite terms containing variable p through m. So the 
final form of the system (9) of differential equations can be written as: 
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After the variable transformation we obtain dimension form of equation ( 0c  and 0λ  are characteristic 
velocity and length) which coincides with canonical sin-Gordon equation [13]: 
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3.  THE CHAIN DYNAMICS IN THE MIDDLE ENERGY INTERVAL. 

Equation (14) has two big classes of stationary solutions ( )ϕ θ , 0x x Vtθ = − −  which move 

with velocity V [13]. 1) spacelike 2 2
01 / 0V c− > ; 2) timelike 2 2

01 / 0V c− < . They are related to the 
magnetic (spacelike) or electric (timelike) states in a Josephson contact (or the spacelike or timelike 
intervals in the relativity theory). 

For the spacelike solutions the equation (14) has integral of motion E; and for the timelike 
solutions these equations have another integral of motion B: 
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The integral B in (16) has meaning of mechanical energy of a reversible pendulum with length 

l=1, ϕ  has meaning of angle of vertical deflection of a pendulum rode. At 1 1B− < < the pendulum 
oscillates near equilibrium position 0ϕ = . At B>1 the pendulum rotates around the suspending point, 
the rotation direction is topological invariant 1σ = ± . The same is true for the integral of motion E. 
The only difference is equilibrium position E =-1 atϕ π= . At -1< E <1 the pendulum executes an 
oscillating movement near equilibrium position. 

 
3.1 The spacelike solutions (V<c0

1
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V c
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−

)  
At |E|<1 stationary solution of (14) describes space oscillations near equilibrium position: 
 

  (17) 

 
Here dn ( , )v kξ  is Jakobi elliptic function with elliptic module k which is defined by relation 

2 ( 1) / 2;  0 1.k E k= + ≤ ≤  In the limit case 0k →  the periodic function transforms into small 
oscillations. In the limit case 1k →  the periodic function transforms into solitary peak.  

At E=1 stationary solution (14) describes domain wall between two domains (2): 
 

 ( ) 2arctan[ exp ]
2 vm πθ σ ξ= +  (18) 

 
3.2 The timelike solutions (V>c0
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)  
At |B|<1 continual equation of motion (14) due integral (16) has periodic stationary solution 

which corresponds to time oscillations near equilibrium position: 
 

  (19) 

 
Here elliptic module k is defined by relation 2 ( 1) / 2;  0 1k B k= + ≤ ≤ . In the limit 0k →  one 

has small oscillations. In the limit 1k → one has periodic peaks. 
At B=1 stationary solution describes domain wall between time domains: 

 
 ( ) 2arctan[exp ]vm θ σξ=  (20) 

 
Fig.3. Angles of the molecules orientation in the chain for the timelike solutions (right)  

according (19) at |B|<1 (oscillations) and (left) according (20) at B>1 (rotation, 1σ = + ). 
Periodic structures at k=0.99 i.e. B=0.996 and B=1.004. 

 
In dependence on topological charge 1σ = ±  this solution give kink ( 1σ = + , ( ) 0m −∞ = , 

( )m π+∞ = ) or antikink ( 1σ = − , ( )m π−∞ = , ( ) 0m +∞ = ) shown in Fig.3. 
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At B>1 continual equation of motion also has periodic stationary solution (time rotation). The 
solution can be written in following forms: 

 

 1

2 2
0 0

( ) sin [  ( , )] ;    
2 / 1

v vm x sn k
k V c
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 (21) 

 
Here sn ( , )v kξ  is Jakobi elliptic function with elliptic module k defined by relation 2 2 / ( 1);  k B= +  
 0 1k≤ ≤  . In the limit 0k →  one has homogeneous rotation of the molecules in the chain. In the 
limit 1k →  the periodic set of kinks (20) arises as in Fig.3. 

 
CONCLUSIONS 

 The nonlinear excitations of the molecular chain with quadrupolar interaction are considered 
in the energy range covering the point of the orientational melt. We derive the dynamic continuum 
equations for the two-sublattice chain with arbitrary nonlinearity and small dispersion. The symmetry 
of the system of the equations and its integral are found. We used previously found a strong 
anisotropy of molecular rotation on the angles plane, the 'valley' of the effective potential. To 
integrate the equations on the plane the trial trajectory (orbit) was introduced, it coincides with the 
bottom of the valley. Construction of the normal curvilinear coordinates on the plane makes it 
possible to uncouple the equations for linear and nonlinear vibrations. Linear oscillations are 
perpendicular to the valley and meet more rigid subsystem. Nonlinear oscillations are along the valley 
and correspond to a soft subsystem, so unstable state is easily achieved. For the nonlinear subsystem 
the sine-Gordon equation is derived, one allows to describe the vibration modes around the 
equilibrium position in the ordered phase and the transition states. Scope of applicability of the 
description extends from the point of equilibrium to the vicinity of the upper saddle point, i.e. within 
the valley effective potential (phases I and II in Figure 1). This range of energies in the order of 
magnitude larger than the region of existence of orientationally ordered phase. To date, dynamical 
models of molecular chains described only states with small or large energies [1].  
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