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The paper contains the description of combined analytical-numerical 
method for solution of the problem of impact damage accumulation and 
fracture in thin free supported plate. The results of experimental 
investigations of this plate are discussed.  

 
 

INTRODUCTION  
 Mechanics of impact interaction of solids is widely developed now due to growing demands of 
safety in modern industrial applications. The great amount of works had been performed in the 
direction of impact loading of thin-walled structures [1, 2], which shows the practical necessity of 
these developments for automobile, rail and aircraft transport, power energetics, nuclear and chemical 
industry. 
 However, the important number of failures in thin-walled plates and shells connects with the 
damage accumulation in the material due to repeating impacts. Such fracture can appear in airplane 
and space panels, motor and turbine casings etc. Now impact damage problems are poor studied 
owing to deficit of experimental results in that area. 
 The presented paper contains the method for calculations of stress-strain state and damage 
distribution in thin-walled free supported rectangular plate. The method is based on the analytical 
solutions of boundary problem as well as on the numerical time integration schemes. The 
experimental results of the low-cycle impact fracture in those plates are given in the second part.  
 
1.  PLATE UNDER IMPACT LOADING.  
 Let us regard thin free supported orthotropic rectangular plate of a constant thickness. The plate 
is loaded by the impactor (spherical, conical or cylindrical), which at the time of the contact has the 
velocity v0

qPPk χε +⋅= 3
2

 and mass m. Following classical approaches of W.Goldsmith [3] and A.P.Philippov [4] 
we’ll use the combined analytical -numerical method.  
 The deflection in the place of contact will be considered for elasto-plastic deformation in the 
following form [5] : 
 

  , Wy −=ε  (1) 
 
where P is a contact impact force, ε is a joint deflection of the impactor y and plate W, χ and q are 
material constants. The coefficient k is determined for regarded indentors due to relations presented in 
[2].  
 The basic unknown contact force P is determined by the following relations, which is derived 
from 2nd

( ) ( )∫∫⋅−⋅=
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dttPdt
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 Newton law: 

   (2) 
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 Let us use the Timoshenko first order shear deformation theory for the solution of thin plate 
bending. Linear εx, εy, εz xyγ and shear , xzγ , yzγ  strains of the plate are connected with plate middle 
surface’s displacements Ue, Ve xθ, W  and shear angles  yθ  by following relations:  
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 The forces and moments in the middle surface { }Txyyx NNNN ,,= , { }Txyyx MMMM ,,= , 

{ }Tyx QQQ ,= are connected with the displacements and curvature varyings:   
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A, B, D, A  are the block matrixes which are determined by the elasticity matrix coefficients for 
orthotropic solid: 
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In the case of the coordinate system which is placed in the middle surface of a plate and if it is 
subjected by symmetric loading, the problem of forced vibrations can be divided into two independent 
ones. In this case [B] is zero matrix. 
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 Here 0, zz n  are the coordinates of bottom and top plate’s surfaces. By substituting (3) into (6), 
the system of equations of plate’s forced oscillations, which is written on displacements, had been 
obtained: 
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 Further the displacements, angles and loading functions are presented as an expansions on 
trigonometric series. Such representation of solution automatically satisfies the boundary conditions of 
free supported plate. After substitution of these series into system (6) we use the properties of 
orthogonality of trigonometric functions. As a result of the system’s solution unknown 
functions ( ) ( ) ( ) ( ) ( ) ( )tVtUtHtFtWtP mkmkmkmkmk ,,,,,  are obtained. The operational method is used.  
 Inverse Laplace transformation is used for transition to originals. The contact force P(t) is 
obtained by use the convolution theorem: 
 

  ( ) ( ) ( ) ( )∫ −⋅→⋅
t

mkmk dtWPWP
0

τττψψ   

 
The equations (1) and (2) are rewritten in the following form: 
 

  ( ) ( ) ( )( )tPW
t

dttP
t
dt

m
tvtPtPk q −∫∫⋅−⋅=+⋅

00

1
0)(3

2
χ   (8) 

 
 This equation is nonlinear relatively unknown contact force P(t). For its solution let us use the 
numerical integration [3, 4]. The basic period of oscillation 1T  is divided on 2s intervals: 

ss
T

⋅
=

⋅
=

1

1

2 ω
πτ . Let us permit, that the force P(t) in each time interval is varied by linear law 

 

  ( ) 





 −⋅−−= − τ

tjPPPtP jjj 1)( , ( ) ττ ⋅<<⋅− jtj 1  . (9) 

 
 The equation for finding of contact force in the time moment t=jτ is written as follows: 
 
  ( ) ( ) ( )τττε jWjyj −=  (10) 
 
 The force value P(jτ) is determined consequently, starting from first time interval, for which 
P0=0, P(τ)=P1

τε 0v≈
. The calculations are organized in the following procedure. At the instant moment of 

impact the value of ε (for example, ) is set, further the P1 

qPPk )()( 11
3

2
χε +⋅=

is calculated and the new precised 

 is determined. The values of P2, P3

xθ

 and other unknowns are calculated in 
similar way. The calculations perform for the time moment t=jτ, in which P(jτ) received the zero 
value, namely for the case of impactor separation from the plate. After finding of contact force 
another unknowns like displacements, angles , yθ , moments, forces and stresses in the plate are 

determined. 
 

2.  IMPACT DAMAGE AND FRACTURE IN RECTANGULAR PLATE 
 Impact damage accumulation phenomenon occurs in the case of repeated impact action [6]. Its 
mechanism is close to low-cycle fatigue. Let us use the Rabotnov-Kachanov damage kinetic equation 
[7]: 
 

  

( )
( )m

me
D

ω
σω
−
∆

=
1



,
( ) 00 =ω , ( ) ** ωω =t ,

 (11) 
 
where ω is the damage parameter, Δσe is the equivalent stress calculated by stress amplitudes for each 
impact,  D and m are the material constants in the damage law.  
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 The calculation order in the case of the analysis of impact damage accumulation in free 
supported rectangular plate is following. For each case of impact loading the formulated above 
method is used in order to determine the maximum amplitude stress values Δσij in each plate’s point 
by use of determined value of impact contact force P. Further the calculated equivalent amplitude 
stress Δσe is used in (11) for calculation of the damage parameter value ω in that points. The 
equivalent stress is determined by three invariants criterion [7]. Calculations are terminated if the 
damage parameter in one point reaches its critical value ω* (as a rule ω*
 The impact damage accumulation up to fracture of considered free supported plate was studied 
by experimental way. The square plates with side 0.18 m and thickness 0.0015m were tested. The 
material of the plates is steel 12H18N10T. 

=1). 

 Information and measuring system (IMS) had been developed in the Department of Control 
Systems and Processes of National Technical University ‘Kharkiv Polytechnic Institute’ was used for 
experimental analysis [8]. The appointment of system is strain registration in the processes of impact 
loading of thin plates. It composes from the strain gauges, signal unit sensors, unit of interface and 
protection, ADC board ADA-1406 and personal computer.  
 The IMS is the part of laboratory testing system (LTS), which additionally includes the device 
of plate fixation and the loading system, which works by use of electrical-mechanical pulse converter. 
The acceleration of the impactor is performed by use of magnetic field coil. The cylindrical impactors 
with diameter 0.004m were used. 
 Determination of the constants for damage law (11) was performed on the specimens which had 
been cut from same steel sheet. 6 specimens and 3 plates were tested. 
 The test sequence includes four groups of experiments: 1) static plate loading; 2) elastic impact 
of plate; 3) impact low-cycle uniaxial tests; 4) impact low-cycle plate fracture.  
 Experiments from first and second group were performed for calibration of the developed LTS. 
Static loading of the plate was used for strain gauge’s calibration. The correlation between measured 
voltage and strains were established. After that the impact elastic loading of plates with spherical and 
cylindrical impactors were studied. For each strain gauge the dependencies from time were 
determined. Fig. 1 contains the signal plots have been obtained by the developed IMS.  
 

                         
      Fig. 1 Strain measuring by IMS                        Fig.2 Impact long term data  
 
 As a result of uniaxial impact test the averaged values of the numbers of cycles to fracture were 
determined. For the first group with stress 400 MPa it was 146 cycles, for second, with another stress 
457 MPa, it was 39 cycles. Fig. 2 contains impact low cycle long strength data, which have been 
obtained in these experiments, as well as the illustrations of the one destroyed specimen from each 
group. The fracture of specimens occurred by punching.  
 Material constants involve in kinetic damage equation (11) were obtained by use of 
experimental data. There values are: D=1 10-29 (MPa)-1

 Let us describe the experimental investigation of impact low-cycle plate fracture. The plates 
were placed in fixation device realizing the free support and were impacted by repeating loading up to 
punching. The velocity of impactor was 0.0625 m/s. The average value of the number of cycles to 
fracture was 79 impacts, variation of the data did not exceed 16%. Let us stress the reasonably local 

/cycle, m=9.9.  
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character of plastic deformation of the plates, the area does not exceed of 6% of total plate’s area (Fig. 
3).  
 
 

 
Fig.3 Impactor and plate after punching 

 
 
CONCLUSIONS  
 The method for solution of impact problems for thin free supported plates is given. It is based 
on analytical solution of boundary problem as well as on numerical for initial value one. The use of 
determined stress fields and kinetic damage equation for simulation of impact damage accumulation 
allows determine the values of lives to fracture of the plates. As usual in Nonlinear Mechanics the 
validation of calculational method needs the comparison between calculated and experimental data. 
This comparison for steel square plates will be possible after another group of experiments connected 
with determination of constants χ and q in equation (1).  
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