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Geometrically nonlinear forced vibrations of circular cylindrical shells with 
different boundary conditions are investigated. The Sanders-Koiter 
nonlinear shell theory, which includes in-plane inertia, is used to 
calculate the elastic strain energy. The shell displacements (longitudinal, 
circumferential and radial) are expanded by means of a double mixed 
series: harmonic functions for the circumferential variable and two 
different formulations for the longitudinal variable; these two different 
formulations are: (a) Chebyshev orthogonal polynomials and (b) 
trigonometric functions. The same formulation is applied to study 
different boundary conditions; results are presented for simply supported, 
clamped and cantilever shells. The analysis is performed in two steps: 
first a liner analysis is performed to identify natural modes, which are 
then used in the nonlinear analysis as generalized coordinates. The 
Lagrangian approach is applied to obtain a system of nonlinear ordinary 
differential equations. Different expansions involving from 14 to 40 
generalized coordinates, associated with natural modes of simply 
supported, clamped-clamped and cantilever shells are used to study the 
convergence of the solution. The nonlinear equations of motion are 
studied by using arclength continuation method and bifurcation analysis. 
Numerical responses obtained in the spectral neighborhood of the lowest 
natural frequency are compared with results available in literature. 

 
 

INTRODUCTION  
A great number of studies on geometrically nonlinear vibrations of circular cylindrical shells is 

available; the literature published before 2003 has been reviewed by Amabili and Païdoussis [1]. The 
problem is also amply discussed by Amabili in his recent monograph [2]. Here the attention is focused 
on large-amplitude free and forced vibrations under harmonic excitation in radial direction. In the 
majority of the studies Donnell’s nonlinear shallow-shell theory is applied to model the problem; see, 
e.g. Refs. [3-6]. However, more refined classical theories have been also used, including Donnell 
nonlinear shell theory retaining in-plane inertia, the Sanders-Koiter (also referred as Sanders) 
nonlinear shell theory, the Flügge-Lur’e-Byrne nonlinear shell theory and the Novozhilov nonlinear 
shell theory [7-12].  

The literature review shows that several methods were developed in the past for investigating 
nonlinear vibrations of circular cylindrical shells with different boundary conditions. Therefore, the 
present study is a contribution toward developing a general framework that allows studying circular 
shells with different boundary conditions, comparing different expansions of mode shapes.  

 
1. STRAIN AND KINETIC ENERGY 

In Fig. 1, a circular cylindrical shell having radius R, length L and thickness h is represented; a 
cylindrical coordinate system (O; x, r, θ) is considered in order to take advantage of the axial 
symmetry of the structure; the origin is placed at the centre of one end of the shell. Three 
displacement fields are shown in Fig. 1: axial u(x, θ, t), circumferential v(x, θ, t) and radial w(x, θ, t) 
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displacement. Geometric imperfections can be considered in the theory by means of initial radial 
displacements w0(x, θ). 

The nonlinear Sanders–Koiter shell theory is used, which is a classical theory derived by using 
the following assumptions: (i) h<<R and h<<L; (ii) the displacements are of the order of the shell 
thickness h; (iii) strains are small; (iv) transverse normal stresses are negligible; (v) the normal to the 
undeformed middle surface remains straight and normal to the middle surface after deformation, and 
no thickness stretching is present (Kirchhoff–Love kinematic hypothesis); and (vi) rotary inertia is 
neglected. 

  
Fig. 1 Circular cylindrical shell: coordinate system and dimensions 
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 of a circular cylindrical shell is given by [2] 
 

          (1) 

 
where O(h4) is a higher-order term in h according to the Sanders–Koiter theory.The middle surface 
strain-displacement relationships and changes in the curvature and torsion for a circular cylindrical 
shell according to Sanders-Koiter nonlinear shell theory should be found in [2, 13 and 14]. The right-
hand side of equation (5) can be easily interpreted: the first term is the membrane (also referred as 
stretching) energy and the second one is the bending energy, while the last term couples the 
membrane and bending energies. E is Young’s modulus and ν  is the Poisson’s ratio. 

The kinetic energy TS
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 of a circular cylindrical shell, by neglecting rotary inertia, is given by 
 

                                                (2) 

 
where ρS

2.  LINEAR VIBRATIONS. MODAL ANALYSYS 

 is the mass density of the shell. In equation (2) the overdot denotes time derivative. 
 

In order to carry out a linear vibration analysis, in the present section, linear Sanders–Koiter 
theory is considered, i.e. in equation (2), only quadratic terms are retained. The best basis for 
expanding displacement fields is the eigenfunction basis, but only for special boundary conditions 
such basis can be found analytically; generally, eigenfunctions must be evaluated numerically. 

Displacement fields are expanded by means of a double series: deformation in the circumferential 
direction is presented by harmonic functions, Chebyshev polynomials are considered in the axial 
direction. Let us now consider a modal vibration, i.e. a synchronous motion: 

 
( , , ) ( , ) ( ), ( , , ) ( , ) ( ), ( , , ) ( , ) ( ),u t U f t v t V f t w t W f tη θ η θ η θ η θ η θ η θ= = =                      (3) 

 
where ( , )U η θ , ( , )V η θ  and ( , )W η θ  represent a modal shape. Now the modal shape is expanded in a 
double series in terms of Chebyshev polynomials *( )mT η  and harmonic functions: 

* * *
, , ,
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where *( ) (2 1)m mT Tη η= −  and ( )mT ⋅  is the m-th order Chebyshev polynomial.  
 
2.1 Boundary conditions 

Boundary conditions are considered by applying constraints to the free coefficients of expansion 
(4). Some of the coefficients    , , ,, ,m n m n m nU V W    can be suitably chosen in order to satisfy boundary 
conditions.  

For the simply supported shell the following boundary conditions are imposed for the mode 
shape: 

0, 0, 0, 0 0,1,x xw v M N for η= = = = =                                         (5) 
 
Such conditions are valid for any θ  and n , therefore equations (5)  are modified as follows: 
 

* * * *
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The linear algebraic system (6) is solved in terms of the coefficients 

1, 2, 0, 1, 0, 1, 2, 3,, , , , , , ,n n n n n n n nU U V V W W W W        , 0,1...n = ; which can be obtained exactly in terms of remaining 
unknown coefficients. 

For the clamped-clamped shell the following boundary conditions are imposed for the mode 
shape: 

0, , 0, 0, 0w w v uηη= = = =                                                         (7) 
For the clamped-free shell the following boundary conditions are imposed for the mode shape: 
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                                  (8b) 

 
The procedure is formally the same as for simply supported boundary conditions; however, the 
resulting linear systems for clamped-clamped and cantilever shells are solved in terms of the 
following coefficients. 

 
2.2 Discretization 

Equations (3) and (4) are inserted into the expressions of kinetic and potential energy (for the 
linear system); then a set of ordinary differential equations is obtained by using Lagrange equations.  

An intermediate step is the reordering of variables. A vector q containing all variables is built 
depending on boundary conditions [12]. For simply-supported (a), clamped-clamped (b) and clamped-
free (c) shell one will have: 

 
0,0 3,0 0,1 3,1 2,0 3,0 2,1 3,1 4,0 5,0 4,1 5,1[ , ,..., , ,..., , ,..., , ,..., , ,..., , ,...] ( )q U U U U V V V V W W W W f t=                              (9a) 

2,0 3,0 2,1 3,1 2,0 3,0 2,1 3,1 4,0 5,0 4,1 5,1[ , ,..., , ,..., , ,..., , ,..., , ,..., , ,...] ( )q U U U U V V V V W W W W f t=                              (9b) 

1,0 2,0 1,1 2,1 1,0 2,0 1,1 2,1 2,0 3,0 2,1 3,1[ , ,..., , ,..., , ,..., , ,..., , ,..., , ,...] ( )q U U U U V V V V W W W W f t=                                (9c) 
 

Lagrange equations for free vibrations are 
 

max0, 1, 2,...,
i i

d L L i N
dt q q
 ∂ ∂

− = = ∂ ∂ 
                                                                (10) 

 
Using (9) and considering harmonic motion, ( ) j tf t e ω= , one obtains  

( )2 0M K qω− + =                                                                                (11) 
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which is the classical nonstandard eigenvalue problem that furnishes frequencies and modes of 
vibration.  

A modal shape corresponding to the j-th mode is given by equations (4), where , , ,, ,m n m n m nU V W    
are substituted with ( ) ( ) ( )

, , ,, ,j j j
m n m n m nU V W   , which are components of the j-th eigenvector of equation (11). 

 
3. NUMERICAL RESULTS 

The equations of motion have been obtained by using the Mathematica 6 computer software. 
The generic Lagrange equation j is divided by the modal mass associated with jq  and then is 
transformed in two first-order equations. The resulting 2×dofs equations are studied by using the 
software AUTO 97 [15] for continuation and bifurcation analysis of nonlinear ordinary differential 
equations.  
 
3.1 Simply supported shell 

A test case of a simply supported circular cylindrical shell is analyzed.  Calculations have been 
performed for a shell having the following dimensions and material properties: L = 0.2 m, R = 0.1 m, 
h = 0.247 mm, E = 71.02 × 109 Pa, ρ = 2796 kg/m3 and ν = 0.31, which corresponds to a case studied 
by several authors [5, 10, 11]. 

 
Fig. 2 Frequency response-curve for simply-supported shell. 28 dofs model (bold line) 

comparing with results available in literature [5, 10, 11] 
 

Fig. 2 shows the frequency-response curve (computed by using the model with 28 dofs) of the driven 
mode ( 1, 6 ( )m nA t= =

) with companion mode participation, namely the following modes:  
 

w:  (1,n), (1,2n), (1,0)-(5,0);         
                   u:  (1,n), (1,2n), (1,0)-(5,0), (3,2n);                                                                      (12) 

2 2
1,6 0.0012f h ρω=

                     v:  (1,n), (1,2n), (3,2n), (1,4n), (3,4n),(1,3n). 
 
The amplitude of the external modal excitation is  and the damping ratio is 

2ζ1,6 = 0.001. The linear circular frequency of the driven and companion modes is 1,6 2 553.33ω π= ×  
rad/s. Fig. 2 shows reasonably good agreement between the present results and those obtained 
previously. 

Convergence of model (12) has also been studied, but for brevity sake it is not presented in this 
paper. More details one should find in [16]. Frequency-response relationship with companion mode 
participation (i.e. the actual response of the shell) for the model (12) should also be found there. 

 
3.2 Clamped shell 

Calculations have been performed for a shell having the following dimensions and material 
properties: L = 520 mm, R = 149.4 mm, h = 0.519 mm, E = 1.98 × 1011 Pa, ρ = 7800 kg/m3

The response of the circular cylindrical shell subjected to harmonic point excitation of 3 N 
applied in the middle of the shell in the neighbourhood of the lowest (fundamental) resonance 

 and ν = 
0.3. 



 
246 

1, 2 313.7nω π= ×  rad/s, corresponding to mode (m = 1, n = 6), is given in Figure 3; only the principal 
(resonant) coordinates, corresponding to driven (a) and companion (b) modes, are shown for brevity. 
Calculations reported in this section have been performed by using an expansion involving 34 
generalized coordinates (with companions), namely: 

 
                                                           w:  (1,n), (1,2n), (3,2n), (1,0)-(9,0);  

                     u:  (1,n), (1,2n), (3,2n), (1,0)-(9,0);                                          (13) 
                                                           v:  (1,n), (1,2n), (3,n), (3,2n).  
 

                                               
(a)                                                               (b) 

Fig. 3 Frequency-response curve for clamped shell with companion mode participation. ––, 
Stable periodic solution; −·−, stable quasi-periodic solution; – –, unstable solutions; BP, 

pitchfork bifurcation; TR, Neimark-Sacker bifurcation. 
 

Convergence of model (13) as well as comparison with results, available in literature, should be 
found in [16]. 

 
3.3 Cantilever shell 

Test cases of perfect cantilever circular cylindrical shell and shell with imperfections are 
analyzed.  Calculations have been performed for a shell having the following dimensions and material 
properties: L = 0.48 m, R = 0.24 m, h = 0.254 mm, E = 4.65 × 109 Pa, ρ = 1400 kg/m3 and ν = 0.38, 
which corresponds to a case studied experimentally by Chiba [17].  The mode investigated is (m=1, 
n=7) which has one longitudinal half-wave and 7 circumferential waves. 

 
 

Fig. 4 Frequency-response curve for cantilever shell with imperfections having different 
magnitude: one thickness imperfection (dashed-dotted line), two thickness magnitude (solid 

line), no imperfection (dashed line). 
Fig. 4 shows that presence of imperfections can significantly change the behavior of the system. 

Moreover, type of the system response depends also on magnitude of imperfection. 
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CONCLUSIONS 

The response of circular cylindrical shells with different boundary conditions has been 
computed by using Sanders-Koiter theory.  Displacement fields were expanded by means of a double 
series: deformation in the circumferential direction is presented by harmonic functions, Chebyshev 
polynomials were considered in the axial direction. 

The approach used in the present study has the advantage of being suitable to be applied to 
different boundary conditions, of satisfying them exactly and of being very flexible to structural 
modifications without complication of the solution procedure. Comparison of the present study results 
with results available in literature was carried out and showed good agreement. 

More details of the present study should be found in [16]. Detailed report on nonlinear 
vibrations of cantilever shells will be published soon. 
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