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ABSTRACT 

Dependence of the cyclic creep rate in stainless steels 1020 and 1026 
on the amplitude and mean value of a loading cycle in the space of 
stresses is investigated. To simulate the process, constitutive equations 
of the endochronic theory of plasticity with the improved hereditary kernel 
were employed. It is shown that the model proposed allows describing 
with a sufficient accuracy the kinetics of the stress-strain state of 
specimens under low-cycle asymmetric loading based on the smallest 
number of basic experiments. 

 
 

INTRODUCTION 
It is known that the operation of actual thin-walled structures, such as pipes and pressure 

vessels, under cyclic loading with high nominal stresses can be accompanied by the phenomenon of 
accumulation of oriented deformations whose intensity and nature are responsible for the rate of 
attaining the limiting state and service life of structure. This effect is called “cyclic creep” or 
“ratcheting”. It is experimentally observed under stress-controlled loading higher the yield stress of 
cyclically-anisotropic materials or unsymmetrical loading of cyclically-isotropic materials. The main 
peculiarity of this effect is that the hysteresis loops induced are never closed and, as a result, the 
recorded strain gradually creeps in the direction of the mean stress. In the region of low-cycle fatigue 
this factor influences appreciably the lifetime of the structural materials. The phenomenon of cyclic 
creep of the material is not necessary caused by time effects as is case of classical creep. To the large 
extent, it is determined by the anisotropy of the material, both initial and acquired in the process of 
loading. The intensity of the processes of cyclic creep depends on the properties of the material 
(isotropic, anisotropic, hardening, softening), the loading mode (stress ratio, nonproportionality of the 
path of loading cycles, loading frequency), the plasticity margin, temperature, etc. 

At present, a significant amount of research [1-4] is devoted to problems of investigations and 
simulation of cyclic loading. This is explained by both practical needs and by the necessity of having 
constitution relations capable of describing the inelastic behavior of materials. In the last decades, 
considerable progress is this field has been attained due to the appearance of numerous experimental 
and theoretical works [5-7] devoted to the improvement of the applicability of various version of the 
theory of plasticity to the case of cyclic asymmetrical loading. 

The aim of this work is to develop a constitutive model of cyclic plasticity for the prediction of 
complex processes of loading, both strain- and stress-controlled, for uniaxial and biaxial low-cycle 
loading. 

 
1.  BASIC EQUATIONS OF THE MODEL 

We shall restrict our consideration to the mechanical behavior of incompressible plastic 
materials in the case of low strains. Assuming that the material is initially isotropic we shall use 
constitutive equations of the endochronic theory of plasticity [9] which are the modification of  
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Valanis’s endochronic theory [8]. Then in the deviatoric Il’yushin’s vector space, the basic equations 
of this theory are 
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where ys  is the yield stress, F  is the hardening function and J z( )  is the kernel of the integral 

equation (heredity function). The total strain vector is presented as the sum of elastic and plastic 
components 
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In the case of the simple tension-compression loading Eq. (1) can be written as follows: 
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For the cyclically stabilizing materials it is most convenient to use the hardening function 
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and regular heredity function 
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where E1 , E2 ,   are material characteristics. 

To construct a simple model for describing the anisotropy of materials under unsymmetrical 
loading we assume that the hardening function F(z) is isotropic. Then the anisotropic behavior arises 
during nonelastic loading only, and it is characterized by the difference of the kinematic hardening for 
tension and compression semicycles. Since the strain hardening under unsymmetrical cyclic loading 
depends on the mode of loading, mean and amplitude stresses of the cycle, one can suggest the 
dependence of this hardening on both the measure of the deformation process and the stress level 
attained in the previous semicycle. To take into consideration the latter factor, it is convenient to use 
the parameter   proposed by Dafalias and Popov [10]. This parameter is the “distance” in the stress 
space between the maximum stress state for the given semicycle and the bounding surface . The 
bounding surface is centered at the origin, grows isotropically each time its stress level is exceeded 
and represents the highest level of the stress state attained in the loading history. In the uniaxial case 
the bounding surface is represented by the two lines B , as shown in Fig. 1. Based on the aforesaid, 
one can write the heredity function as follows: 
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which implies the different values E2 for tension and compression semicycles under unsymmetrical 
loading. 
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Fig. 1 Block loading scheme and designations 

 
The relationship between the stresses and the internal time (5) under arbitrary uniaxial cyclic 

loading for k-th semicycle can be written in the form 
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We define the current modulus of plasticity as 
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where the overdot denotes the operation of differentiation with respect to z . 
 
2.  MODELING OF UNIAXIAL RATCHETING 

Let us use the above equations to describe the deformation of specimens fabricated from the 
AISI 1020 cyclic softening carbon steel and AISI 1026 cyclic stable carbon steel under block loading 
[3]. The first block was the strain symmetric cycling in the range of 2%. Then the specimens were 
unloaded to approximately zero stress, after which the control cyclic loading followed with different 
values of mean and amplitude stresses of the cycle. Numerical modeling of the such loading involved 
a step-by-step procedure for the control of the deformation process. The baseline experiments and the 
calculation and experimental techniques for specifying the basic unknown functions and the material 
constants are described in detail elsewhere [9]. 

The main peculiarity of the given model is to set the correct functional dependence of 
parameter E2 of the heredity function on the   [11, 12] of the preceding semicycle. For initially 
isotropic materials such dependence can be built on the basis of a single basic experiment performed 
by complex program. First the strain symmetric loading is performed until the steady state is attained. 
Then follows the stress unsymmetric cycling at lower stresses also until the steady state and finally 
monotone loading to the stress level of the first stage is effected. During the first block we determine 
the parameter E2 for 0  . From the second loading block we can determine the E2 for the tension 
and compression semicycles. 

We use Eq. (10) to get the plastic modulus under unsymmetrical loading in the steady state 
case. Then for the arbitrary point B of the tension semicycle if we use the designation which is 
accepted in Fig. 1 we can write the equation 
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The intrinsic time intervals ˆ, ,z z z  correspond the measures ˆ, ,    which connected by the 

expression dz d C . Now we can readily get the  2E    value if the modulus H+ is determined 

from the experiment. Another E2
  value at the   can be found from the equality 
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obtained from the theoretical analysis of the steady hysteresis loops at ratcheting with the constant 
rate. 

The shape of the  2E   function can be determined after the approximation of the obtained 

values by the appropriate function. In our case we use dependence in a following form 
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where a , b  and n  - parameters of model. 

The first summand Eq. (14) is the limiting value that corresponds to  2E   on the memory 

surface, and is determined from experimental date. In the second summand expression (14) first factor 
ba  take into account influence on  2E   mean stress and second factor - nD  take into account 

influence stress amplitude. Parameter D defined as follows: 
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where a  - amplitude stress, bas
a  - is the amplitude stress of the basic experiment, s  - radius of 

surface plasticity in the stabilized condition, defined as 
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3.  MODEL VERIFICATION 

The equations presented above are now used for description of uniaxial block loading of 
specimens made of cyclically softening CS 1020 and cyclically stable CS 1026 steels. We use the 
experimental data presented in [3]. In all cases, the first loading block was realized as straining with 
symmetric cycles and a range of total strains of 2%. In the second block, we applied stress-controlled 
asymmetric loading with different values of the mean and amplitude stresses.  

For numerical analysis, we created a special computational program. It was used to perform all 
necessary calculation. Parameters of the model for the two studied materials used in calculation 
contained in the Тable 1. 

 

Table 1 Parameters of the model cyclic plasticity 

Steel  E, ksi σт, ksi E1, ksi E2(0), ksi α C β1 β2 

CS1020 25125 40 25298,5 1721 965 0,78 12,4 30 

CS1026 26320 20 19600,0 650 1051 0,95 20 20 
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According to (11) was specified functional dependence  2E   on value of   in case of 

asymmetric cyclic loading studied materials, namely: 
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The results of numerical calculation are presented in Figs. 2 and 3. In figure 2, we present the 

results of computation (solid lines), experimental date (doted lines) and results of computation by 
Hassan and Kyriakides [3] (dashed lines) for CS 1020 steel subjected to asymmetric loading in the 
form of the dependence of the maximum strain in a cycle on the number of loading cycles for various 
values of the mean stress (Fig. 2a) and different amplitudes of stress cycles (Fig. 2b). In Fig. 3 results 
for steel 1026 are accordingly presented. 

The comparison of the numerical results with the experimental data shows the efficiency of the 
proposed model for the description of cyclic creep both in the first loading cycles and in stationary 
mode. It is worth noting that more precise results were obtained in the case where asymmetric loading 
is simulated varying the amplitude stress for a constant value of the mean stress. At the same time, all 
these theoretical predictions are completely covered by spread in the experimental data. For more 
exact predictions, one may either use other functional dependences for the approximation of the 
quantities 2E  and   or perform at least two basic tests. 
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Fig. 2 Dependence of the maximum strain in 
a cycle on the number of loading cycles for 

CS 1020 steel 

Fig. 3 Dependence of the maximum strain in 
a cycle on the number of loading cycles for 

CS 1026 steel 

 
CONCLUSIONS 

Constitutive equations of the endochronic theory of plasticity for describing of the 
unsymmetrical stress-controlled loading are presented. New rule of the kinematic hardening is 
introduced for characterizing an induced anisotropy under such loading. A discrete scale of the 
intrinsic time and the evolutionary equation of the hardening function suggested in the work make it 
possible to obtain simple constitutive equation for modeling the complex histories of cyclic loading.  
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Analysis of the modeling results of uniaxial ratcheting testifies we have obtained a satisfactory 
description of the stress-strain kinetics under unsymmetrical stress cycling. 
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