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ABSTRACT 

By use a double circular plate system dynamics, the multi-frequency 
analysis of forced non-linear dynamics is pointed out. Series of the 
amplitude-frequency and phase-frequency graphs as well as eigen-
forced time functions–frequency graphs are obtained for stationary 
resonant states and analyzed according present singularities and triggers 
of coupled singularities, as well as resonant jumps. 
For analyze of stationary forced resonant regimes of forced  non-linear 
oscillations for presented model, we use the graphical presentation of the 
numerical experiment results over the first asymptotic aproximation of the 
two amplitudes and two phases of the two-frequency resonant stationary 
regimes.  
For the system of two circular plates connected with non-linear visco-
elastic layer with hard or soft non-linear properties  on the basis of 
obtained numerical and graphical results, we can conclude that non-
linearity in the interconecting distributed layer intoroduce in the system 
non-linear part of the potential energy as a energy interactions between 
circular plates as subsystems (deformable bodies) coupled in the hybrid 
system with complex component eigen forced non-linear modes, as well 
as mutual influence and transfer energy through all the system 
components of the mods.  Resonant jumps, as well as „resonant forced 
oscillatory jumps“, trigger of coupled singularities, as well as coupled 
triggers of coupled singularities are reason for appearence of new 
questions for reasearch this non-linear forced dynamics. 

 
 

INTRODUCTION  
Composing the proper mathematical model of mechanical system presents one of the most 

important steps in the treatment of the system.  On the other way said, mathematical  modeling regard 
on the usage of mathematical language for presents the behavior of practical  systems. It plays the role 
of better understanding of systems features. In the more realistic description of the systems  non-
linearity appears both as an object’s natural characteristic and the non-linearity of the systems of 
differential equations describing the system dynamics, which is a consequence of the choice of the 
coordinates of the system’s description. Since, the problem is to explore and in some way control non-
linearity. Theory is useful for presenting the general conclusions to the simple models  while the 
computers are useful for obtaining the special conclusions for more complicated system dynamics.  

In this paper, we will present one mechanical system, a double circular plate system with non-
linear interconnecting layer, and its mathematical non-linear descriptions then treat that non-linearity 
in a sense of making the qualitative analysis of the system behavior. 

In many engineering systems with non-linearity, single as well multi- frequency excitations 
are the sources of multi frequency resonant regimes appearance high as well as low frequency modes. 
That is visible from many experimental research results and also theoretical results (see Refs. [16] and 
[17]). The interaction between amplitudes and phases of the different modes in the non-linear systems 
with many degrees of the freedom as in the deformable body with infinite numbers frequency 
vibration free and forced regimes is observed theoretically in the  Refs. [20] and [22]  by Stevanović 
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K. , (1972) and (1975) by use averaging asymptotic methods Krilov-Bogoliyubov-Mitropolyskiy (see 
Refs. [10-15] by Mitropolyskiy, Yu. A. (1955), (1965), (1995)).  This knowledge has great practical 
importance. In the monograph [16] by Nayfeh (2004), a coherent and unified treatment of analytical, 
computational, and experimental methods and concepts of modal nonlinear interactions is presented.  

By using averaging and asymptotic methods Krilov-Bogolyubov- Mitropolyskiy for obtaining 
system of ordinary differential equations of amplitudes and phases in first approximations and 
expressions for energy of the excited modes depending on amplitudes, phases and frequencies of 
different non-linear modes are obtained by Hedrih K.  in [2, 3] and by Hedrih K. and Simonović J. in  
[8]. By means of these asymptotic approximations, the energy analysis of mode interaction in the 
multi frequency free and forced vibration regimes of non-linear elastic systems (beams, plates, and 
shells) excited by initial conditions for free oscillation regimes was made and a series of resonant 
jumps as well as energy transfer features for forced regimes were identified.  
   Recent technological innovations have caused a considerable interest in the study of 
component and hybrid dynamical processes of coupled rigid and deformable bodies (plates, beams 
and belts) (see Refs. [2-4] and [6-8])  denoted as hybrid systems, characterized by the interaction 
between sub-system dynamics, governed by coupled partial differential equations  with boundary and 
initial conditions. 
 In this paper, we will try to present the more realistic model with non-linearity in the 
connected layer and to investigate the phenomenon of passing through resonant range and appearance 
of one or several resonant jumps in the amplitude–frequency and phase–frequency curves of different 
nonlinear modes. In system with non-linearity it is noticeable the energy transfer between coupled 
sub-systems. For detail see Refs. [5] and [8] which contain analysis of energy transfer in double plate 
system dynamics. 

 
1.  SOLUTION IN THE FIRST ASIMPTOTIC APROXIMATION OF PDEs  FOR 
TRANSVERSAL VIBRATIONS OF A DOUBLE PLATES SYSTEM  

If we present a physical model of a double plate system, shown in the Fig. 1.a, then it is clear 
that the mathematical model of such a system may be expressed by the system of two coupled partial 
differential equations (1) [3,4] and [6,7,8] which are formulated in terms of two unknowns: the 
transversal displacement  trwi ,, , 2,1i  in direction of the axis z , of the upper plate middle surface 

and of the lower plate middle surface. We present the interconnecting layer as a model of one 
standard light visco-elastic element [1] with started spring’s length 

0l  and nonlinearity in the elastic 

part of the layer as shown in Figure 1b.  
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Fig.1. a) A visco-elastically connected double circular plate system; b) model discrete 

element of visco-elastic non-linear interconnected layer. 
 

The system of partial differential equations (1) is derived using Principle of dynamic 
equilibrium in the following forms: 
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 and the sign  on the right hand side 

corresponds  to the feathure of soft (sign +) or hard (sign -) properties of the elastic layer. We suppose 
that the functions of external excitation at nm -mode of oscillations are the two-frequency process in 
the form: 

       nmnmnmnmnmnmnmi ththtq 22021101 coscos~   ,  ,....,2,1,nm  . The solution for system (1) with 

the visco-linear-elastic connection is taken in the form of the eigen amplitude 
functions    ,rW nmi ,  ,....4,3,2,1,mn , satisfying the same boundary conditions, expansion with time 

coefficients in the form of unknown time functions    tT nmi , that describing their time evolution (see 
Refs. [4] and [7]):  
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where are: s

ijnmK cofactors of determinant corresponding to basic homegenous coupled system [7], 
inm̂  

real parts of the corresponding pair of the roots of the characteristic equation [4], and amplitudes  tRinm
 

and phases    ttt inminminm   unknowen time functions which, we are going to obtain using the 

Krilov-Bogolyubov-Mitropolyskiy asymptotic method (see Refs. [10-15]). It is taken into account  
that defined task satisfy all necessary conditions for applying asymptotic method Krilov-Bogolyubov-
Mitropolskiy concerning small parameter and that external excitation frequencies 

nmnm p11 ˆ  and  

nmnm p22 ˆ  are in the resonant range intervals of the corresponding eigen frequencies of unperturbed 

linear system. By applying  the asymptotic method, we obtain the system of the first order differential 
equations according unknovwen amplitude and phases in the first asymptotic approximation [8] as 
follow: 
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influence of elastic layer. We observed the case when external distributed two-frequencies force acts 
at upper surfaces of upper plate with frequencies near eigen circular frequencies of coupled plate 

systems 
inminm p̂ , 2,1i ,  ,....,2,1,nm  . In this case the lower plate is free of load. This  means that, we 

were observed the passing thought main resonant states by discrete values of the forced frequencies. 
Using the first asymptotic approximation of the amplitudes and phases of multi frequency particular 

solutions of the non-linear system dynamics (3)-(4), a numerical experiment over the non-linear 
modes in stationary regimes of non-linear system forced dynamics is realized. 

For analyses of the stationary regime of oscillations, we equal the right hand sides of 
differential equations (3)-(4) for amplitudes  tRinm

 and difference of phases  tinm   with null. 

Eliminating the phases nm1   and nm2 , we obtained system of two algebraic equations by unknown 

amplitudes nma1  and 
nma2

, also with elimination of amplitudes nma1  and nma2 , we obtained the forms 

for phases nm1   and nm2   in the case of two-frequencies  forced oscillations in stationary regime of 

one nm  mode of double plate system oscillations. Solving that two systems by numerical  Newton-
Kantorovic's method in computer program Mathematica, we obtained stationary amplitudes and 
phases curves of two-frequencies regime of one eigen nm -shape amplitude mode oscillations in 
double plate system coupling with visco-elastic non-linear layer depending on frequencies of external 
excitation force. If we fixed the value of on external excitation frequency of two possible, we obtained 
amlitude-frequency curves as well as phase-frequency curves of stationary states of vibration regime 
in the following forms: 

1* for second  external excitation frequency with constant discrete value ( constnm 2
) 

corresponding  amplirude-frequency and phase-frequency curves: 
                 nmnm fa 111  ,  nmnm fa 122  ,  nmnm f 131   and  nmnm f 142   and                              (5) 

2* for first external excitation frequency with constant discrete value constnm 1
 corresponding  

amplirude-frequency and phase-frequency curves: 
              nmnm fa 251  ,  nmnm fa 262  ,  nmnm f 271   and  nmnm f 282  .       (6) 
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In this extend abstract, we will present some of the amplitede-frequencies and phase-
frequencies curves of stationary kinetic state in continuously exchange of fixed discrete values of one 
external excitation frequencies and in that sense regard system in stationary regime, and some 
characteristic diagrams of that amplitide-frequency and phase-frequency  curves are presented on the 
following Figs. 2 and 3. 

Let us to make a quantitative analyses of passing through discrete stationary states alog 
resonant frequency intervals and apperance of new non-stable branches on amplitude (phase)-
frequencies curves like as changes on that characteristics for the frequencies of external force in the 
range of eigen frequencies of coupling in one nm -eigen amplitude mode of corresponding linearized 
system oscillations. We take into account that system for the case when the plates are with the same 
boundary and material characteristics and when the upper plates has the height twice then the lower 
one, 212 hh  , and obtained the eigen frequencies of visco-elastic linear coupling with values: 

 1

111 55.135ˆ  sp  and   1

112 14.301ˆ  sp . 
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Fig. 2. Amplitude-frequency characteristic curves for the amplitudes of the 

first  nmnm fa 251  and second  nmnm fa 262   time  harmonics  for hard (a*, b*, c*, d*) and for soft 

(e*, f*, g*, h*) characteristics of  interconnected layer and for the different  value of excited 
frequency  nm2  for  discrete  value of excited frequency  constnm 1  with noted 
corresponding one or more resonant jumps. Arrows means directions of the resonant jumps. 

 
The amplitude-frequency responses for two frequency like stationary vibration regimes, 

contain amplitudes 1a  and 2a  presented in Fig. 2. These shown diagrams exhibit a hardening, Figs. 
2a*,b*,c* and d*, and softening, Figs.2e*,f*,g* and h*, characteristic as a non-linear interactions 
between  time non-linear modes of the two-frequency external excitation in the resonant interval of 
two external excitation frequencies close to the eigen linearized system frequencies. This is a property 
of hard and soft non-linearity of a visco-non-linear elastic layer and corresponding non-linear  
characteristic is in accordance with governing system of partial differential equations (1) for the case 
of the lower sign for hard non-linear characteristic, and of the upper sign for soft non-linear 
characteristics.  That shapes are  results of the modes interaction and  of the particular discrete values 
choice of the external excitation frequencies nm1  used in the resonant frequencies intervals 

belonging to corresponding eigen frequencies nmp1ˆ  of the corresponding  nm - th eigen amplitude 
shape mode of plate linear system taken in the simulations.  
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Fig. 3. Characteristic resonant jumps on the amplitude-frequency (a*, b*) curves 

 nmnm fa 251  and   nmnm fa 262  , and phase-frequency (c*, d*) curves  nmnm f 271   and 

 nmnm f 282   as a characteristic cases of the large resonant interactions betwee external 

two frequency excitation and non-linear properties of the double plate system dynamics 

when both frequencypes  nm1 and nm2  take values from the resonant frequency intervals 
and casses for the appearing of the large interaction of the coupled stationary resonance  
regime.  

Characteristic for both series of the amplitude-frequency curves for two frequency like non-
linear stationary vibration regimes is that more then one pair of the resonant jumps appear, together 
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with more then one instability branch in the corresponding amplitude-frequency and phase-frequency 
curves.  It is visible that in the listed Figs 3 a*,b*,c* and d*. In the listed figures branch presented in 
dot line correspond to unstable stationary vibration regimes. 

 
2.  THE TIME HARMONICS SHAPES AND THEIR MUTAL INFLUENCE 

If we presents the time functions at nm -mode of oscillations of the plate systems in form of 
sum of two harmonics: 
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where, we use the change of amplitudes and phases by (3)-(4), and since, we have the numerical 
results, we are in position to present the shape of harmonics depending of frequencies of external 
excitations. For the chosen parameters of the system thas two harmonics in the 11-mode of 
oscillations has the following form: 

        2111221121111 ,cos,906.5,
1

 taT     (8a) 

        2121221221111 ,cos,32.3,
2

 taT     (8b) 

where  12  means that, we use the discrete values of the const2  or of the const1 of the 

external frequencies, and  21,ia  or  21,i  means that, we use amplitude or phase stationary 

response  constai  21,  and  consti  21,  in one case and  21 , constai  and 

 21 , consti in the other case.  

 In regard that, we considered the stationary regimes of vibrations in nm -mode of oscillations 
we have to use the particular moment in time so we use that the  11  st . In the Figs. 4 and 5 we 

present the shapes of the some time harmonics like as the shape of the time function in the 11-mod of 
oscillation of the plate system.   
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Fig. 4. The shapes of the first (a*, b*) and second (c*, d*) eigen forced time non-linear 
harmonic       consttconstaT  211121121111 ,cos,906.5,

1
   (a*, b*) and 

      consttconstaT  212221221111 ,cos,32.3,
2

   (c*, d*), for the different  value 

of excited frequency  nm1  and for discrete  value of excited frequency  constnm 2 . 
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Fig. 5. The evolution of the shape of the first (a*, b*) and second (c*, d*) eigen forced time 
non-linear harmonic       21121121111 ,190190cos,190906.5,

1
 taT  

      21221221111 ,190190cos,19032.3,
2

 taT  

for the different  value of excited frequency  
nm2  and for discrete  value of excited frequency  

1
1 190  snm

, with  11.0  st  and  15.0  st  
 

CONCLUSIONS 
 For analyze of stationary regimes  of non-linear oscillations for presented model, we solved 

system of PDE`s (1) semi analyticaly in asymptotic first approximation. One part of solutions, were 
obtained numerically and presents amplitudes-frequencies  and phase-frequency characteristics with 
identification, in the first asymptotic approximations, interaction of the non-linear component mods  
and non-linear resonant interactions, in the displacement of the plate middle surface points. For the 
case of the external excitation by two frequency force and resonant range of the frequencies, we 
conclude complexity in the system non-linear response, depending of initial conditions and also of 
other system kinetic parameters and corresponding relation between these sets of the kinetic 
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parameters.   
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