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The problem of time-optimal deceleration of rotation of a free rigid body 
is studied. It is assumed that the body contains a moving mass 
connected to the body by an elastic coupling with square-law friction. 
Low deceleration torque of viscous friction forces also acts on the rigid 
body. It is assumed that the body is dynamically symmetric. The optimal 
control law for deceleration of rotation of the rigid body in the form of 
synthesis, the operation time, and the phase trajectories are determined. 

 
 
INTRODUCTION  

Analysis of passive motion of a rigid body with a cavity filled with viscous liquid, motion of a 
rigid body with a moving mass connected to the body by an elastic coupling with viscous or square-
law friction and motion in a resistive medium is fulfilled in [1-8]. The problem of control of rotation 
of “quasi-rigid” bodies via concentrated torques of forces important for application was insufficiently 
studied. A class of systems resulting in smooth control actions and allowing one to apply methods of 
singular perturbations without accumulation of “boundary-layer”-type errors was separated [2, 9-13]. 

The problem of time-optimal deceleration of rotation of a dynamically symmetric body 
connected at a point on the axes of symmetry with a mass concerning the small linear sizes by an 
elastic coupling with square-law friction dissipation is studied. Furthermore, low decelerating torque 
of a resisting medium acts on the rigid body. Rotation is controlled by the torque of forces with the 
bounded absolute value. The considered model continues those studied performed earlier in [2, 9-13].  
 
1. STATEMENT OF THE PROBLEM  

Based on approach [3, 13] the equations of controlled rotations in projections onto the axes of 
the coordinate system attached to the fixed rigid body (Euler equations) can be represented in the 
form [3, 5, 6,11,13] 

( ) ApSprqrFGMqrACpA p χω −++=−+ ⊥
62

  

( ) AqSqrprFGMprCAqA q χω −+−=−+ ⊥
62

                          (1) 

CrSrACMrC r χω −−= ⊥
− 351
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Here p , q , r  are the projections of the vector of absolute angular velocity ω  onto the attached 
axes, ( )CAAdiag ,,=J  is the tensor of inertia of the unperturbed body, rqpM ,,   are the projections of 
the vector of control torque of forces M ; and ωG J=  is the angular momentum of the body; its 
absolute value is 
 

[ ] 2
12222 rCAG +== ⊥ωG , 222 qp +=⊥ω  

 

For simplification of the problem the structural constraint is introduced in system (1). It is 
assumed that the diagonal tensor of the torque of viscous resistance forces is proportional to the tensor 
of moment of inertia forces; i.e., the torque of dissipation forces is proportional to the angular 
momentum.  

 
            ωM Jr χ−=                                                        (2) 

 
where χ  is some constant coefficient of proportionality depending on the properties of the medium 
and the shape of the body. The resistance acting on the body is represented by a pair of applied forces. 
In this case the projections of the torque of this pair of forces on the principal axes of inertia of the 
body are Apχ , Aqχ , Crχ  [4, 5]. Such assumption is not conflicting. 

It is additionally assumed that the admissible values of the torque of control forces M  are 
bounded by the sphere [13] 

 
uM bu = , 1≤u , ( )G,tbb = , ∞<<≤< ∗

∗ bbb0                                 (3) 
 

where b  is the scalar function bounded in the considered region of variation of the arguments t , G , 
according to the conditions (3). This domain is determined a priori or can be estimated via the initial 
data for G ,  ( ) 0

0 GG =t . 
The notations of F , S , introduced in (1), are expressed in terms of the system parameters as 
 

322 −−Ω= CAmF ρ , 4433 −−Ω= ACddmS λρ , 11 −−= CAd                          (4) 
 

The coefficients F , S  characterize the torque of forces due to a presence of elastic element. 
Here m  is the mass of the moving point, ρ  is the radius-vector of the fixing point 1O  of the moving 

mass on the axis of symmetry. The constants, m
c=Ω2 , 3ΛΩ== m

µλ  determine oscillation 

frequency and velocity of their damping respectively; c  is the stiffness of the elastic coupling; µ  is 
the coefficient of square-law friction. 

However, if we assume that the coupling coefficients λ  and Ω  are such that “free” motion of 
the point m  resulting from the initial deviations attenuates much more rapidly than the rigid body 
makes one revolution, then in this case the motion of the rigid body is similar to the Euler – Poinsot 
motion, and the relative oscillations of the point by this motion will be small. It is supposed that 

 
ω<<Ω                                                                   (5) 

 
In equation (5) provides introducing a small parameter into (4) and assumed stated perturbed torques 
to be small with purpose to apply asymptotic averaging methods. Note also that the mass m  can be 
large, comparable with the mass of the body. 

The time-optimal deceleration of rotation is formulated 
 

( ) 0=Tω , umin→T , 1≤u                                                (6) 
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It is necessary to find the optimal control law in the form of the synthesis ( )ω,tuu = , the 
corresponding trajectory ( )0

0 ,, ωω tt  and the operation time ( )0
0 ,ωtTT = , as well as the Bellman 

function of the problem ( ) ttTW −= ω, . 
 
2. SOLUTION OF THE OPTIMAL DECELERATION PROBLEM 

Note that the torque of forces due to motion of a rigid body with a moving mass connected to 
the body by an elastic coupling with square-law friction is internal for the fictitious body, and the 
torque of viscous friction forces is external. 

Based on dynamic programming, the synthesis of time-optimal control has the form [13] 
 

G
ApbM p −= , 

G
AqbM q −= , 

G
CrbM r −= ,  ( )Gtbb ,=                         (7) 

 
Here, the following can be assumed for further simplification: ( )Gtbb ,= , ∞<<≤< 210 bbb . 

Let us multiply the first equation of (1) by Ap , the second equation by Aq , and the third 
equation by Cr  and sum them up. We obtain the equation of the form 

 
( ) GGtbG χ−−= , , ( ) 0

0 GtG = , ( ) 0,, 0
0 =GtTG , ( )0

0 ,GtTT = , ( ) ( ) tGtTGtW −= ,,  
 

In the assumption that ( )tbb = , we obtain the solution and a condition for T  determination, 
 

( ) ( ) ( ) ( ) ττ τχχ debeGtG t
t

t

tt −−−− ∫−=
0

00 , ( ) ττ χτχ debeG
T

t

to ∫−=
0

0 , ( )0
0 ,GtTT =               (8) 

 
Here, t  is the current deceleration time and T  is operation time. 

For constb =  the solution to equation and boundary value problem (8) is written as 
 

( ) ( ) ( )[ ]btbGtG −−+= χχ
χ

exp1 0 , 





 += 1ln1 0

b
GT χ

χ
, 00 =t                    (9) 

 
Below, case (9) is analyzed in details. 

 
3. ANALYSIS OF AXIAL ROTATION FOR CONTROLLED BODY MOTION 

Substituting known expression for G  into the third equation of (1) results in a nonlinear 
equation with respect to r   

 

( ) 



 +−+−= −−− χ2

32224221 rCGSrCAbGrr                                    (10) 

 
Replacing the axial component of the vector of angular velocity, GRr = , where R  is the 

unknown function, equation (10) is reduced to the form admitting separation of variables and trivial 
integration, 

 

( )[ ] 2
32225422 1 RCGRSGCAR −−= −−

                                        (11) 
 

The vector of the angular momentum G  upon projection onto principal central axes of inertia 
of the body results in the expression is θcosGCr = , where θ  is the nutation angle. As a result, the 
following relation is obtained for the unknown R : θcos=CR . Equation (11) after transition to the 
unknown θ  can be written in the form 
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( ) ( ) 707562 expcossinsin btbGSCA −−+= −−− χχθχθθθ , ( ) 00 θθ =              (12)  
 

The solution to this equation is written as 
 

( )
( ) ( ) ( ) ( )tKtgtgec

ececec

=+++−−

−−−+
−

2424ln15cos3sec5

cossec2cos3sec5cossec2
01002

00424

θπθπθθ

θθθθθθ
,               (13) 

 
where 
 

( ) ( ) ( ) ( )( )[ +−−+−±= −−−− 17exp78 701762 tbGSCAtK χχχχ  

( ) ( ) ( )( ) ( ) ( ) ( )( )+−−+−−−++ −− 15exp52116exp67 5012601 tbGbtbGb χχχχχχ

( ) ( ) ( )( ) ( ) ( ) ( )( )+−−+−−−++ −− 13exp33514exp435 30144013 tbGbtbGb χχχχχχ

( ) ( ) ( )( ) ( ) ( )( ) tbtbGbtbGb 70162015 1exp712exp221 −−−+−−−++ −− χχχχχχ  
 

It can be assumed without losing generality that the value of 0θ  (and θ ) lies in the first quarter 
( 20 0 πθ ≤≤ ). If 0θ  takes values in this interval, then the nutation angle also does not go beyond 

these limits in the course of evolution of rotation, since 0=∗θ  and 2
πθ =∗  are the stationary 

points of equation (12). 
For CA ≈ , and 0θ  the perturbation methods can be applied in the neighborhood of stationary 

points; in this case these methods result in elementary expressions. For example, after the first 
iteration we have the following expression for θ  

 

( ) ( )tKt 05020 cossin
8
1 θθθθ +=                                            (14)  

 
Formula (14) provides the temporal analysis of the nutation angle for different values of the 

system parameters and initial data. 
 
4. NUMERICAL ANALYSIS AND CONCLUSIONS 

Let us consider the problem of determination of the nutation angle ( )tθ  in the particular case 
constb =  according to (12). Let us transform this equation to the dimensionless form. We introduce 

the notation 
 

tχτ = , 717672

71

χCA
kSk =∗ ,  717672

71
0

0 χCA
SG

G =∗ , 1−= χbk                        (15)  

 
As a result of these transformations, we obtain the equations for the nutation angle θ , 
 

( )( ) ( ) θθθτ
τ
θ 57

0 cossinsinexp ∗∗∗ −−+= kkGdsign
d
d

                        (16) 

 
Equations (16) was numerically integrated for arbitrary values of ∗

0G , ∗k  and initial angle 

2
0 πθ =  rad. The plots of variation of the nutation angle θ  are shown in Figs. 1-2. Figure 1 

corresponds to the dynamically prolate body, and Fig. 2 to the oblate body. 
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                                 Fig. 1     Fig.2                 
 

Fig. 1 corresponds to the dimensionless initial value of the angular momentum 10 =∗G . Curves 

1, 2 and 3 were calculated for arbitrary values of 10,1,1.0=∗k  respectively. According to the 

calculation for dynamically prolate body ( CA > ) the nutation angle tends to a limiting value 2
π  

rad. Numerical interval of the dimensionless time 10≤τ  is shown in Fig. 1. According to Fig. 2 it 
can be seen that under the essential action of the dimensionless coefficient of control torque of forces 
( 10=∗k ) the nutation angle reaches the limiting value fast. In addition the body has time to brake 
since the operation time is the current deceleration time order over. The more smaller the value ∗k , 
the more slowly the axis of symmetry of the body tends to the limiting position, though the body has a 
time to brake in the calculated time interval in all cases.  

The variation of the nutation angle for dynamically oblate body was numerically studied 
( CA < ). The graphs of variation of the function ( )tθ  for value 10 =∗G  are shown in Fig. 2. Curve 1 

corresponds to value 1.0=∗k , curve 2 corresponds to value 1=∗k , and curve 3 corresponds to value 

10=∗k . According to curves 2 and 3 dynamically oblate body tends to its stable limiting position of 
the rotation axis corresponded to 0→θ rad. It can be seen that the character of the tendency depends 
on the value of the dimensionless coefficient of the control torque of forces. The more larger this 
coefficient, the more faster the axis of the body tends to limiting position. In addition the operation 
time decreases essentially. 

The numerical computation shows that the character of behavior of the function ( )tθ  in given 
problem coincides with the character of behavior of the function of the nutation angle variation for the 
rigid body with the moving internal masses [2]. 

Therefore the direction of the angular momentum vector G  in the coordinate system fixed to 
the body approached a steady state along the axis corresponding to the largest moment of inertia. 
 
CONCLUSIONS  

The problem of the synthesis of time-optimal deceleration of rotation of the dynamically 
symmetric rigid body with a moving mass connected to the body by an elastic coupling with square-
law friction in the resistive medium, is studied analytically and numerically. In the framework of the 
asymptotic approach, the control, the operation time (Bellman function), and the nutation angle are 
determined. The qualitative properties of optimal motion are established. 
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