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In our previous published paper the gyro-rotor was analyzed as a 
shaft-disc system with coupled rotations. The disc is eccentric and 
shaft is supported on both sides, at first side with a hinged fixed 
bearing and at other side with cylindrical sliding bearing on the 
support. The axes of a shaft self rotation and shaft support was with a 
cross section. In this paper, we presented special case when the 
support shaft is vertical and the gyro-rotor shaft of self rotation is 
horizontal, but they are without intersection. A system of non-linear 
differential equation is determined for such gyro-rotor dynamics. When 
the angular velocity of support shaft axis is constant, the motion of 
gyro-rotor was presented by means of phase trajectories and that is 
done for different cases of disk eccentricity and angle of skew disk 
inclination. Some numerical analysis of obtained analytical 
expressions is performed through Math Cad and corresponding 
graphs visualization of the non-linear kinetic parameters. From 
obtained analytical expressions for kinetic pressures to the gyro-rotor 
shaft bearings four vector components are separated. A pure 
kinematical vector rotator which depends on angular velocity and 
angular acceleration of the gyro-rotor shaft self rotation is defined and 
its properties are analyzed. 

 
 

INTRODUCTION  
Numerous engineering systems and machines include many elements which rotate around axes. 

Such elements we usually call as rotors. Some rotors rotate around fixed axes but some rotate around 
moveable axes. The rotors are the basic working parts and sub-systems in many machines so that the 
problem of rotor vibrations has existed for a long time. The Vertical Gyro is a two-degree of freedom 
attitude gyro. It provides electrical outputs of the vehicle's pitch and roll angles, which are supplied to 
various systems including artificial horizons, autopilots, antenna stabilizers, and weapon delivery 
systems. Pickoff sensors such as potentiometers, resolvers or synchros are mounted on the gimbals 
and provide instantaneous pitch and roll output signals as the vehicle maneuvers.  

The dynamic of such element motion is very old engineering problem beside that it is actually 
nowadays. Numerous applications of the gyro-rotor system dynamics are reason for numerous 
investigations of the non-linear dynamics of gyro- rotors as well non-linear phenomena appeared in 
this dynamics. 

There are many research results and discoveries of new non-linear phenomena and of stationary 
and no stationary vibration regimes with different kinetic parameters of the dynamical system. But, 
many researches pay attention to this problem again. There are new numerical and experimental 
methods that help us to discover the properties of non-linear dynamics 

 Elementary model of the gyro-rotor was presented as a theoretical example in the Reference 
[1]  by Andronov, Vitt and  Haykin. This example is mass particle motion along rotate circle around 
vertical axis through center of circle and along circle vertical diameter. Monograph [2] by Gerard I.  
and Daniel J. contain basic of the elementary stability and bifurcation theory necessary for 
investigation non-linear dynamics and its kinetic parameter properties. Also, the monograph [3] by 
Guckenheimer and Holmes related to non-linear oscillations, dynamical systems and bifurcations of  
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fields contain numerous fundamental theorems useful for application for investigation gyro-rotor 
dynamics.   

University books [13] and [14] by Rašković give us a basic knowledge necessary for use in the 
descriptions of the gyro-rotor models and possible comparison by simplest models of the gyro-rotor 
dynamics and corresponding system of the forces with active of reactive sources, or gyroscopic 
effects. It is necessary to point out a Reference [15] by Stoker which contains an example with 
nonlinear dynamics mass particle in the turbulent damping very useful for applications in the 
investigation of the gyro-rotor dynamics. 

Series published References [4-11] by Hedrih (Stevanović) present new results concerning non-
linear dynamics of a heavy material particle along circle which rotates and optimal control in such 
system dynamics. In the Reference [5] series of the theorems of trigger of coupled singularities are 
defined with corresponding proofs. The optimal control in non-linear mechanical systems with trigger 
of the coupled singularities is contained in References [6] and [7]. Monograph [8] is related to the 
vector method of the heavy rotor kinetic parameter analysis and nonlinear dynamics and present series 
of the elementary examples with gyro-rotors non-linear phenomena presented by phase trajectory 
portraits with trigger of coupled singularities and homoclinic orbits in the form of number eight. 

References [10] and [11] are related to the influence of the no ideal rough line with Coulomb’s  
type friction and introduced non-linearity with alternation of the friction force directions.  

Previous published paper [12]  by authors of this paper is related to nonlinear dynamics of the 
heavy gyro-rotor with two skew rotating axes, and this paper present our new results in some area – 
investigation of the non-linear dynamics and kinetic parameter properties of the gyro-rotors. 

 
1.  THE MODEL OF THE GYRO-ROTOR SYSTEM AND BASIC EQUATIONS  

In this paper we presented eccentric disc (eccentricity is e ), with mass m  and radius r  , which 
is inclined to the axes of its own rotation by the angle β  (see Figure 1.). The shaft is supported on 
both sides, on the first side with a hinged rigid bearing and at other side by cylindrical sliding bearing. 
In special case when the support shaft is vertical and the gyro-rotor shaft is horizontal, but they are 
without intersection between corresponding their axes. The normal distance between axes is a . The 
angle of own rotation around moveable horizontal axis oriented by the unit vector 1n  is 1ϕ  and the 
angular velocity is 1ω . The angle of rotation around the vertical shaft support axis oriented by the unit 
vector 2n  is 2ϕ  and the angular velocity is 2ω . The angular velocity of rotor is 

221122111 nnnn 






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ϕϕωωω +=+= . 1ϕThe angles  and 2ϕ are generalized coordinates in case when, 
we investigate system with two degrees of freedom. In this case 1ϕ  is independent generalized 
coordinate, and coordinate 2ϕ  is rheonomic coordinate with kinematical excitation, programmed by 
forced support rotation by constant or changeable angular velocity. When the angular velocity of shaft 
support axis is constant, that is 2022 ϕωϕ += t , ,22 const== ωϕ 02 =ω (in this case the angle 

2ϕ is a rheonomic coordinate defined by previous time dependent 
function), and system is with two degree of mobility, but with one 
degree of freedom. For that case the differential equation of the gyro-
rotor system rotation  can be written in a fo llowing form (see Ref. 
[12]):     
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The motion of gyro-rotor was presented by means of phase trajectories and that is done for 
different cases of disk eccentricity and angle of skew. For that reason it is necessary to find first 
integral of the differential equation (1).  After integration of the differential equation (10 the non-
linear equation of the phase trajectories of the gyro rotor dynamics with the initial conditions ,00 =t  

( ) 1001 ϕϕ =t , ( ) 1001 ϕϕ  =t  is obtained in a form: 

 
 

Fig. 1. Gyro-rotor 
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Fig. 2. The transformation of the graphical presentation of the potential energy analog 

of the heavy gyro rotor with rotating axis that are without intersection for different values (d*) 
of the eccentricity e  and  (a*, b* and c*) of the angle β of disk inclination to the proper shaft 

axis rotation. 
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Fig. 3. Transformation of a phase trajectory of the heavy gyro-rotor with rotating axis that are 
without intersection for different values of disk inclination angle β to the axis of self rotation 

and for two different initial conditions:  
(a*) [ ]radπϕ =0 ; [ ]sec/0 radπϕ =  and  (b*) [ ]radπϕ =0 ; 00 =ϕ  
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Fig. 4.  Transformation of a phase trajectory  presentation of the heavy gyro-rotor with 

rotating axis that are without intersection for different values of normal distance between 
axes and for a corresponding  initial condition. 

 
As the analyzed system is conservative it is the energy integral. For that case we can separate 

part of expressions in the equation (4) in the following form: 
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as a analog to the potential energy in this rheonomic system. The analog to the potential energy 
exchange curves for different values of the system parameters (the eccentricity e  and the angle β  of 
the disk inclination) are given on Fig.2. 

In Figure 3 a transformation of a phase trajectory of the heavy gyro-rotor with rotating axis 
that are without intersection for different values of disk inclination angle β to the axis of self rotation 
and for two different initial conditions: (a*) [ ]radπϕ =0 ; [ ]sec/0 radπϕ =  and  (b*) [ ]radπϕ =0 , 

00 =ϕ  is presented. In Figure 4 a transformation of a phase trajectory  presentation of the heavy gyro-
rotor with rotating axis that are without intersection for different values of normal distance between 
axes and for a corresponding  initial condition is presented. 

 
2.  THE KINETIC PRESURES ON SHAFT BEARINGS OF THE GYRO-ROTOR 

The shafts and axis are supported by bears so they are subjected to static and kinematics 
forces. Bearing force analysis of mechanisms is an important field in which mechanical engineers 
study a motion in order to design mechanisms to perform useful tasks. The forces whose nature is 
static have constant intensity but those with kinetics nature are changeable. So, the kinetic pressures 
on bearings can be very changeable in intensity and could involve some damages. The task is 
minimizing kinetic components.  
     An analytical formulation of forces in a form of four components is obtained by using two 
theorems: the theorem of linear momentum derivative and the theorem of angular momentum. By 
application of the two theorems we can write:   
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By solving these vector equations, we get of bearing forces in a form of four components. We 
separate some new unit vectors, also, as orientation of the kinetic pressure components applied to 
bearings in the following forms;:    
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The first components (7) are directed in line with unit vector 11111 cossin ϕϕ vuw 

+= , the 
second components (8) are directed in line with unit vector 11112 cossin ϕϕ vuw 

−= . These 
components are depending on angular velocity 2ω  and  angular velocity 1ω , the body disk mass 
distribution, the body mass axial inertia moment for the rotating axis, nJ , the body mass axial inertia 
moment for the axes normal on  rotating axis, uJ and vJ , and the deviational moment of the body 
mass for a couple of normal axis oriented by the unit vectors 1n  and 1v , .nvJ These are periodical 
components with period of  2π and with extreme values, too. 
     The third components  (9) are depending on the body mass, the disk eccentricity, ε, distance 
between two axes, a , the angle of disk inclination, β, and they are proportional to square angular 
velocity 2ω . These components are directed in line with unit vector 11113 sincos ϕϕ vuw 

+−= . 
    The fourth components (10) are directed in line with vector named rotator. The intensity of these 
components depends on the deviational moment of the body gyro-rotor (disk) mass for a couple of 
normal axis oriented by the unit vectors 1n  and 1v , nvJ  the body gyro-rotor mass m, eccentricity e and 
the angle of disk inclination, β. 
 
3.  THE ROTATOR  

In the expressions of the kinetic pressure components (10) to bearings of shaft self rotation, 
there are intensity as multiplication by the member with constant intensity (this means that its 
intensity depends only on mass and geometrical characteristics of rotor) and multiplied by a member  
depending only of kinematical parameters, angular velocity and angular acceleration of self rotation 
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of gyro-rotor. That kinetic pressure component is directed is in line with the vector which is named 
rotator [8]. The rotator is pure kinematics vector and it rotates and increases by angular velocity and 
angular acceleration of the gyro-rotor rotation around self shaft of self rotation. Its intensity 
dependences on angular velocity and angular acceleration, that is,  

( ) 2 4
1ϕ ϕ ϕℜ = ℜ = +



 

      (11) 
Figures 5.a* show the dependence on the vector rotator intensity in the function of the elongation and 
for different values of the initial parameters h of the energy. The rotator is different from zero so the 
dynamic pressures on the bearings are different from zero, too. The smallest values of the rotator are 
corresponding to the position of the unstable static equilibrium position, while the greatest values of 
the rotator are corresponding to the position of the stable static equilibrium position. 
Figures 5.b* show the rotator trajectories. There are some shapes of trajectories and their shapes 
depend on parameters of the system. The parametric equations of rotator trajectories are: 
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Fig. 5.  Vector rotator of the heavy gyro rotor: a)the intensity portrait; b) the hodograph; c)  
the angular velocity for different values of angle β and for different initial conditions 

 
The angle that rotator form with axis 1u  is determined by express:  
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and its graphical presentation is shown on Figure 5.c*. 
 
CONCLUSIONS 

By use analytical expressions of the kinetic components of the kinetic pressures to the gyro-
rotor shaft bearings through MathCad program numerous visualizations are presented through 
characteristic graphs and qualitatively analyzed. Special attentions are focused to the vector rotators, 
as well as to the absolute and relative angular velocities of the rotation of the kinetic components of 
the kinetic pressures to the gyro-rotor self rotation shaft bearings. 
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From obtained analytical expressions for kinetic pressures to the gyro-rotor shaft bearings four 
vector components are separated. One component of the kinetic pressures to the gyro-rotor shaft 
bearings of self rotation is caused by deviation properties of the gyro-rotor mass distribution around 
self rotation shaft axis and is expressed as product between deviation mass inertia moment according 
shaft axis of self rotation and pure kinematical vector rotator  which depends on angular velocity and 
angular acceleration of the gyro-rotor shaft self rotation. Three other components of the kinetic 
pressures to the gyro-rotor shaft bearings are functions of the both angular coordinates and angular 
velocities of the gyro-rotor system dynamics as well as of the gyro-rotor mass distributions and 
deviational properties. 
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