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ABSTRACT 

 
In this paper we consider solutions of gas dynamics equations for the 
galaxies in the form of solitary wave. The aim of this paper is to research 
the trajectories of such waves for the different cases of surface density. 

 
 

INTRODUCTION  
Problems, related to the study of solitons and their interactions lately are of interest in many 

areas of fundamental and applied scientific researches. Solitons are intensively studied in 
hydrodynamics, fiber optics, in magnets. Solitons may occur in proteins and DNA . 

Note, that the study of various processes in the disks of galaxies using hydrodynamic models 
are carried out by A.M. Friedman  [1]. In the Research Center "Kurchatov Institute" the processes  in 
galaxies were studied under his leadership, in particular, hydrodynamic instability in the mechanisms 
of spiral density waves generation .  

In this paper we consider structurally stable solitary waves in a medium, which is a gas 
component of galaxies. The assumption of the existence of such waves follows from the equivalence 
of  shallow water equations  and equations of gas dynamics of galaxies ( see the [1]). But the 
existence of solitons in shallow water is a well known and experimentally verified fact. Note that in 
2008, astronomers have recorded a soliton in space (the message of the European Space Agency 
ESA).  

Solitons considered in this work are structurally stable density perturbation, localized in some 
small areas. Similar solitons considered in [3] as a weak asymptotic solution of equations of shallow 
water. In this paper  such solitary waves are considered in the  gas disk of galaxies.  We study the 
trajectory of solitons.  

 
 

1.  SOLUTIONS OF GAS DYNAMICS EQUATIONS IN THE FORM OF SOLITARY WAVES  
We consider the equation of gas dynamics of galaxies [2], written in polar coordinates for the 

case of the isentropic model and polytropic law ( sBp  ) of the surface pressure and surface 
density:  
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where ),,( tru  , ),,( trv   are the radial and azimuthal velocity components of gas, respectively, 
),,( tr  is the surface density of the gas disk, ),,( trФ  - is the gravitational potential, B is a positive 

constant. Note that the system (1) - (3) is quasi-linear. 
Let 0)(0 ru , )(0 rv , )(0 r , )(0 rФ  are the equilibrium components of velocity, density and 

gravitational potential, respectively. We seek a particular solution of (1) - (3) (same as in [2]) as the 
sum of the equilibrium values, and some disturbances: ),,()(),,( 10 trrtr   , 

),,()(),,( 10 trФrФtrФ   , ),,(),,( 1 trutru   ,  
),,()(),,( 10 trvrvtrv    . (4) 

The area in which we consider a system (1) - (3) has the form: }:),{( 0 RrrrG   . From 
(1)-(3) we get the system: 
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For convenience, we introduce the vector-function perturbations  
)),,(),,,(),,,((),,( 1111 trtrvtrutrf   , that will be sought in the form: 

                                            ),,,()(),,( 01  trttrf f .  (6) 
where  ))(),(),(()( tttt vuf   , )(tu , )(tv , )(t , )(~ tr , )(~ t  are some functions,  

0)(~ tr , 0)( t ,    is a small parameter , 0   is some constant, 

}))(~())(~(exp{),,,(


 tgtrrg
tr


 , (7) 

)(xg  is a nonnegative pair function, which has the properties: 
1. 0)( xg , ),( x  
2. 0)0( g  
3. )()( xgxg   
4. There are constants, 11

~, , 22
~, , 01 c , 02 c , 1~,0,1~,0 2211   ,  0  such that  
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1 xgcxgxgc   , )()('' 2

2 xgcxg   in the field }ln)(:{ xgx  . 

It is obvious, that such function exists (for example, 4)( xxg  ). It is evident from relation (7) 
that the perturbation is a solitary wave. The point of maximum of the wave moves along the 
trajectory, which is described in polar coordinates by the functions )(~ tr  and )(~ t .  

Differentiating (7), we obtain:  
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The remaining arguments consist of the substitution of relations (7) - (8) into (5) and the 

allocation of appropriate conditions. 
From the first equation (5) we obtain the following system:  
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The second and third of equations (5) can be written as: 
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2 SYSTEMS OF EQUATIONS THAT DETERMINE THE TRAJECTORY OF WAVES  
Proposition 1. Let 0)( tu , 0)( tv , 0),,(1 trФ  .Then the nonzero structure-stable 
perturbation of the surface density in the form (4) can be existed in the region where the 
surface density is constant (for the isentropic model). The trajectory of  perturbations 
coincides with the trajectories of the gas . In the region  
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Proposition 2. Let 0)( tv , 0)( tu , 0),,(1 trФ  . Then there is a disturbance of the 
surface density of the form (4) for the case 3s  and thus the following equations:    
                                                0),),(~),(~()()),(~),(~( 00    tttrttttr  (12) 
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Proposition 3. Let 0)( tv , 0)( tu , 0),,(1 trФ  . Then there is a disturbance of the 
surface density of the form (4) for the case 3s  and thus the following equations: (12), 
(13), 
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disturbance of the surface density of the form (4) for the case 2s  and thus the following 
equations: (12), (13),  
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Proposition 5.  Let 0)( tv , 0)( tu , ),,,())()()('~( 0
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there is a disturbance of the surface density of the form (4) for the case 21  s  and thus the 
following equations: (12), (13),  
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In the above statements obtained the general system of equations whose solutions give 
the trajectory of single waves. Note, that condition (12) means that the perturbation of the 
surface density must be negative.  

 
3 THE BEHAVIOR OF WAVES IN THE REGIONS OF SURFACE DENSITY 

VARIATION  
It is interesting to investigate the behavior of the wave as it passes through the region 

of increased or decreased surface density. For this study, we introduce a function ),,( tr   
which characterizes the density perturbation. Let ),,()(~),,( 00 trrtr   ,  
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systems (15) - (17) the conclusion can be easily obtained that the solitary wave is deflected 
upward surface density. In the collision of two solitary waves the effect of repulsion can be 
expected.  

In the following figures, we see the trajectory of the maximum single disturbance of 
the surface density for the case where the surface density is given: 
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Fig. 1 The trajectory of the wave, 
a=-9, 01.0  , 150,4 00  vu    

Fig. 2 The trajectory of the wave, 
a=-9, 01.0  , 150,44 00  vu    
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CONCLUSIONS 

 Thus in this paper we consider the trajectory of solitary waves in a gas disk of the 
galaxy. Note, that the gas disk is a rotating system. The equations of gas dynamics of galaxies 
and  shallow water equations are equivalent. This fact was considered by A.M. Friedman in 
[1]. We can assume that similar waves exist in shallow water, which is rotated. 
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Fig. 3 The trajectory of the wave, 

a=-1, 01.0  , 150,44 00  vu 
Fig. 4 The trajectory of the wave, 

a=4, 01.0  , 70,4 00  vu   
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