ПРИБЛИЖЕННЫЙ РАСЧЕТ ОСНОВНЫХ ХАРАКТЕРИСТИК ЭЛЕКТРИЧЕСКОГО ВЗРЫВА МЕТАЛЛИЧЕСКОГО ПРОВОДНИКА ПОД ДЕЙСТВИЕМ БОЛЬШОГО ИМПУЛЬСНОГО ТОКА Баранов М.И., Лысенко В.О.

Научно-исследовательский и проектно-конструкторский институт "Молния" Национального технического университета "Харьковский политехнический институт", г. Харьков

Представлены результаты приближенного расчета таких основных электрического характеристик воздушного взрыва (**ЭB**) тонкого металлического проводника сильноточной цепи высоковольтного В генератора импульсных токов (ГИТ) как времени наступления взрыва t_R проводника, амплитуды U_m и длительности τ_{mu} импульса перенапряжения на проводнике и критического значения интеграла тока J_k для взрывающегося проводника. Аналитические соотношения для рассматриваемых величин t_{R} , U_m , τ_{mu} и J_k были получены при ряде упрощающих допущений на основе известных классических положений электротехники, электродинамики, техники высоких напряжений и больших токов. На основании анализа полученных расчетных формул установлено, что при ЭВ исследуемого режима колебательного разряда проводника ДЛЯ высоковольтной конденсаторной батареи ГИТ значения времени его взрыва t_{B} , амплитуды длительности τ_{mu} импульса перенапряжения на проводнике определяются такими электрическими параметрами разрядной цепи ГИТ как первой амплитудой I_m и круговой частотой ω импульсного тока, а также величинами поперечного сечения S и длины l проводника. Чем больше величины круговой частоты ω и амплитуды I_m импульсного тока и меньше величина поперечного сечения Ѕ проводника, тем меньше значения времени его взрыва t_B , длительности τ_{mu} импульса перенапряжения на проводнике и выше уровень амплитуды U_m данного перенапряжения на увеличением длины l проводника значение указанной амплитуды U_m перенапряжения также увеличивается. Показано, что при ЭВ критическое значение интеграла тока J_k для взрывающегося проводника определяется удельной электропроводностью материала исследуемого проводника при температуре его кипения, плотностью атомов (ионов) в кристаллической решетке материала металлического проводника при его температуре до воздействия на него импульсного тока в разрядной цепи высоковольтного ГИТ и термодинамической работой выхода свободных электронов из материала проводника.