ВЫБОР ДИАГНОСТИЧЕСКОГО ПАРАМЕТРА ЧАСТИЧНЫХ РАЗРЯДОВ ДЛЯ ОЦЕНКИ СОСТОЯНИЯ ИЗОЛЯЦИИ

Лактионов С.В.

Национальный технический университет «Харьковский политехнический институт», г. Харьков

При оценке состояния твердой изоляции по характеристикам частичных разрядов (ЧР) обычно используется такой параметр ЧР, как кажущийся заряд $q_{\mathit{ЧР}}$. Но выбор этой характеристики не учитывает других параметров ЧР, например количества импульсов. И это существенное упущение, так как уровень кажущихся зарядов в изоляции силовых кабелей может быть одинаковым, а при этом их частота сильно отличаться. Известно, что срок службы изоляции с более меньшей частотой импульсов ЧР будет продолжительнее, чем при высокой частоте импульсов.

Поэтому для определения качества изоляции необходим не один параметр - кажущийся заряд $q_{\mathit{ЧP}}$, а совокупность характеристик ЧР: частота следования импульсов ЧР, ток и мощность импульсов ЧР, амплитудночастотные и амплитудно-фазовые характеристики импульсов ЧР.

Средний ток ЧР определяется выражением:

$$I_{\text{up}} = \frac{1}{t_{II}} \cdot \sum_{i=1}^{k} q_i$$

- где t_{H} – время измерения ЧР, с, q_{i} – кажущийся i-го импульса ЧР.

- Таким образом, ток ЧР определяется кажущимся зарядом. Мощность частичных разрядов определяется по формуле:

$$P_{\text{UP}} = \frac{1}{t_{H}} \cdot \sum_{i=1}^{k} q_{i} \cdot u_{i}$$

где u_i –мгновенное напряжение на включении.

Из формулы выше видно, что мощность ЧР на двух разных включениях, расположенных в твердой изоляции, может сильно отличаться при одинаковом значении кажущегося заряда, так как напряжение на включениях может быть различным.

Измерение этих характеристик в процессе эксплуатации изоляции на разных этапах ее старения позволит выявить основные параметры, влияющие на ресурс изоляционной конструкции.