ИССЛЕДОВАНИЕ СКОРОСТИ СКОЛЬЖЕНИЯ ЗУБЬЕВ В ЭВОЛЮТНОМ ЗАЦЕПЛЕНИИ

Протасов Р.В., Устиненко А.В.

Национальный технический университет «Харьковский политехнический институт»,

г. Харьков

Важной задачей современного машиностроения является повышение несущей способности зубчатых передач при одновременном снижении массогабаритных характеристик. При этом основным лимитирующим фактором в эвольвентных передачах является низкая контактная прочность, в результате чего происходит выкрашивание зубьев в околополюсной зоне.

Одним из путей решения данной задачи является применение эволютного зубчатого зацепления с выпукло-вогнутым контактом (ВВК), предложенного А.И. Павловым.

Контактное выкрашивание зуба, происходящее в околополюсной зоне, начинается ниже делительного диаметра зуба шестерни. Это связано с совместным действием контактных давлений и проскальзывания одного профиля относительно другого. Также скорость скольжения является важнейшим параметром, влияющим на износостойкость передачи. Поэтому исследование скорости скольжения в эволютном зацеплении является важной научно-практической задачей.

Описаны методики определения абсолютной и удельной скоростей скольжения в эволютном зацеплении. Было определено, что абсолютная скорость скольжения в эволютном зацеплении ниже, чем в аналогичном составляющая скорости эвольвентном. Касательная скольжения околополюсной зоне эволютного зацепления больше, чем в аналогичном эвольвентном зацеплении, следовательно это может негативно сказаться на износостойкости передачи. Однако удельное скольжение в эволютном зацеплении меньше, чем в аналогичном эвольвентном. Это объясняется меньшей абсолютной скоростью скольжения в эволютных передачах. Определена зависимость между начальными условиями при синтезе эволютной передачи — коэффициентом разновидности k и углом зацепления α и скоростью скольжения в зацеплении, показывающая, что с уменьшением kи увеличением а увеличивается касательная и нормальная составляющие, но абсолютная и удельная скорости скольжения уменьшаются.