ПОИСК ЗАМКНУТОГО ПУТИ В ГРАФЕ, ПРОХОДЯЩЕГО ЧЕРЕЗ ЗАДАННОЕ МНОЖЕСТВО ВЕРШИН, ЯВЛЯЮЩЕЕСЯ СОБСТВЕННЫМ ПОДМНОЖЕСТВОМ ВЕРШИН ГРАФА

Прокопенков В.Ф.

Национальный технический университет «Харьковский политехнический институт», г. Харьков

В новой решаемой задаче заданы:1) граф $G=\langle V,E\rangle$, где $V=\{v_i \mid i=\overline{1,n}\}$ — вершины графа, $E=\{e_{ij} \mid i,j\in\overline{1,n}\}$ — дуги графа с длинами $D=\{d_{ij} \mid i,j\in\overline{1,n}\}$; 2) $V_z\subset V$ — собственное подмножество вершин графа;3) $v_s^z\in V_z$ — начальная вершина. Необходимо найти замкнутый путь минимальной длины из вершины v_s^z , проходящий через все вершины множества V_z с возвратом в вершину v_s^z . В отличие от задачи коммивояжёра в этой задаче $V_z\neq V$. Такая постановка задачи соответствует проблеме поиска замкнутого пути между населенными пунктами на географической карте.

Искомый путь находится как гамильтонов цикл в новом графе $G_z = \langle V_z, E_z \rangle$, в котором $E_z = \left\{ e^z_{ij} \mid i,j \in \overline{1,|V_z|} \right\}$ — множество дуг с длинами $D^z = \left\{ d^z_{ij} \mid i,j \in \overline{1,|V_z|} \right\}$. Длина дуги $d^z_{ij} \neq \infty$, если в графе G существует путь $p_{ij} = \left\langle v^z_i, v^{ij}_1, v^{ij}_2, ..., v^{ij}_k, ..., v^{ij}_{m-2}, v^z_j \right\rangle$ такой, что $v^z_i, v^z_i \in V_z, v^{ij}_k \in V$ и $v^{ij}_k \notin V_z$, $\forall k = \overline{0,|V|-2}$, иначе $d^z_{ii} = \infty$.

Предлагается следующий алгоритм решения задачи:

- П.1. Для заданных G и $V_z \subset V$ построить граф G_z :
- 1.1. Для каждой пары пунктов $v_i^z, v_j^z \in V_z \mid i \neq j$ алгоритмом Дейкстры определить кратчайший путь p_{ij} такой, что v_i^z, v_j^z соответственно начальная и конечная вершины пути, а вершины, через которые может проходить путь, не принадлежат V_z и зафиксировать его длину d_{ii}^z (для i = j положить $d_{ii}^z = \infty$).
 - 1.2. Создать граф G_z , из множеств V_z и E_z описанным выше способом.
 - $\Pi.2$. Для графа G_z найти гамильтонов цикл $p_c = \left\langle v_i^z \mid i = \overline{1, |V_z| + 1} \right\rangle = \left\langle e_{i,i+1}^z \mid i = \overline{1, |V_z|} \right\rangle$.
- П.3. Каждую дугу $e_{i,i+1} | i = \overline{1|V_z|} \in p_c$ представить соответствующим ей путём $p_{i,i+1}$ в графе G и получить искомое решение.

П.4. Остановиться.

Тестирование показало работоспособность алгоритма. Решением задачи может быть замкнутый путь без повторов или с повторами вершин. Поскольку алгоритм Дейкстры для n = |V| имеет сложность $O(n^2)$, предложенный алгоритм имеет сложность $O(n^4 + \xi(m))$, где $\xi(m)$ — сложность шага $2 (m = |V_z|)$. Если существует точный алгоритм решения задачи поиска гамильтонова цикла минимальной длины, то разработанный алгоритм найдёт оптимальное решение.

Таким образом, разработанное решение задачи реализует её сводимость к задаче поиска гамильтонова цикла в графе, а сложность сводимости оценивается функцией $O(n^4)$.