О ТРЕХМЕРНОЙ ВИЗУАЛИЗАЦИИ В МОДЕЛИРОВАНИИ ЭЛЕКТРИЧЕСКОЙ АКТИВНОСТИ СЕРДЦА

Павленко А.В., Павленко Д.В., Дацок О.М.

Харьковский национальный университет имени В.Н. Каразина, г. Харьков

Актуальность задачи реконструкции потенциалов на поверхности сердца человека по измеренным электрокардиографическим потенциалам его тела (обратная задача кардиографии — ОЗК) не вызывает сомнений. Работа над ее решением требует создания анатомически точных трехмерных моделей торса человека и его внутренних органов, графической визуализации и задания необходимых электрофизических параметров и способа их трактовки в численной модели прямой задачи электрокардиографии (ПЗК).

Решение ПЗК является одним из этапов решения ОЗК, а также средством Графическая контроля правильности результатов ОЗК. необходима для качественной оценки корректности получаемых результатов, а также обратной связи при формировании исходных данных программы-Разработка программных средств качественной трехмерной визуализации и проектирования очень трудоемка, и отвлекает от основной задачи. Наш опыт свидетельствует о возможности применения для указанных целей современных редакторов трехмерной графики общего назначения (Blender, 3ds Max) путем использования стандартного открытого формата файлов описания геометрии и материалов. Реалистичные модели торса и подготовленные внутренних органов, В приложении 3D экспортируются в ОВЈ файл, содержащий позиции вершин сетки и связь координат текстур с вершинами. Он имеет простой текстовый формат и считывается для заполнения исходных данных о геометрических свойствах моделируемых объектов программой-решателем. Помимо геометрии задачи, необходимо задавать (и контролировать в ходе решения) распределения удельной электропроводности тканей и потенциалов, что осуществляется через файл-спутник ОВЈ файла – МТL, содержащий параметры материалов и имена файлов изображений текстур. Используя сведения о связи координат текстуры и трехмерного объекта, с помощью специально составленной палитры выполняется преобразование значений электрофизических параметров значениям цвета пикселей текстуры. Так подготавливаются исходные данные об электропроводности и измеренных потенциалах в точках наложения кардиографических электродов, необходимые для проведения вычислений. Программа-решатель выполняет обратное преобразование цвета пикселей в условленные значения, производит вычисления и экспортирует результаты в виде измененных изображений текстуры. Для визуальной оценки результата достаточно открыть OBJ файл в любой программе для просмотра 3D сцен.

Применение предложенного подхода позволяет использовать высококачественные инструменты создания и отрисовки трехмерных объектов для ввода исходных данных и визуализации электрической активности сердца, и таким образом уделить максимум внимания проектированию, реализации и исследованию соответствующих численных моделей.