СРАВНЕНИЕ ТЕХНИКО-ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ ВЕНТИЛЬНО-ИНДУКТОРНОГО ДВИГАТЕЛЯ (ВИД) В РЕЖИМЕ ПОСТОЯНСТВА МОЩНОСТИ ПРИ РАЗЛИЧНЫХ СПОСОБАХ РЕГУЛИРОВАНИЯ

Галайко Л.П.

Национальный технический университет «Харьковский политехнический институт», г. Харьков

В работе [1] отмечается (далее цитата): «не уделив должного внимания предварительному математическому моделированию желаемых режимов работы, оптимизации конструкции и законов управления ВИП, пользователь получит негативный опыт в попытке применения новой техники». В работе [2] рассмотрены 2 способа регулирования в режиме постоянства мощности: 1) фазовое регулирование; 2) фазовое регулирование и изменение числа витков фазы путем переключения соединения катушек с последовательного на параллельное. Основным критерием для оценки способов выбран коэффициент пульсаций момента. По этому критерию рекомендуется применение 2 способа. Однако, при этом не учитываются такие недостатки способа как существенное усложнение конструкции и возможное появление несимметрии параллельных ветвей, что может привести к усилению вибраний. Кроме того, как показали расчеты с помощью имитационной модели, описанной в работе [3], (смотри таблицу) при втором способе несмотря на улучшение формы тока не произошло увеличения коэффициента полезного действия. Очевидно, окончательный вывод о целесообразности применения 2 способа можно будет сделать после доказательства существенного отрицательного влияния значительных пульсаций момента на работу машины (усиления вибраций).

Таблица - Технико-экономические показатели ВИД в режиме P=27 кВт, M=75 Н.м. $\Omega=360$ рад/с. для двух вариантов регулирования.

$N_{\underline{0}}$	I_{max} , A	I_{ef} , A	Ψ_{max} , Вб	Δp_m , BT	Δp_{el} , Bt	ή, o.e	k_r , o.e.	
1	165	71.86	0.3	789.7	598,9	0.9512	1.94	
2	175	94	0.18	1292	256.2	0.946	1.31	

В таблице приняты обозначения: 1,2 - номера вариантов; I_{max} , I_{ef} - максимальное и эффективное значение тока фазы; Ψ_{max} - максимальное значение потокосцепления фазы; Δp_m , Δp_{el} - магнитные и электрические потери; $\dot{\eta}$ - коэффициент полезного действия без учета механических и добавочных потерь; k_r - коэффициент пульсаций момента (отношение максимального момента к среднему).

Литература:

- 1. Бычков М.Г. Вентильно-индукторный електропривод: современное состояние и перспективы развития // Рынок электротехники. 2007. №4. С 71 -78.
- **2**. Галайко Л.П. Анализ режима постоянства мощности при регулировании числа витков в имитационной модели вентильно-индукторного двигателя. Вісник НТУ «ХПІ» 42'2015, Харьков.
- **3.** Галайко Л.П. Имитационная моднль установившегося режима работы вентильноиндукторного двигателя с учетом магнитных потерь. Вісник КДПУ імені Михайла Остроградського.№3/2009 (56) частина 2. Кременчук – 2009.