АНАЛИЗ ГАЗОСОДЕРЖАНИЯ МАСЕЛ В БЕЗДЕФЕКТНЫХ ТРАНСФОРМАТОРАХ НЕГЕРМЕТИЧНОГО ИСПОЛНЕНИЯ Шутенко О.В.

Национальный технический университет «Харьковский политехнический институт», г. Харьков

Для исследования газосодержания В масле бездефектных трансформаторов негерметичного исполнения результаты использованы анализа растворенных в масле газов по 6 областям Украины для 426 Установлено, наличие существенных качественных и трансформаторов. количественных отличий газосодержания масел в негерметичном оборудовании от существующих представлений, согласно которым, при низкотемпературных воздействиях в основном образуются водород и предельные углеводороды, а непредельные углеводороды образуются только при высокотемпературных воздействиях. Однако как видно из табл. 1 в наибольшем числе проб газом с максимальной концентрацией являлся этилен -47,96%, далее метан -20,48%, затем этан -5,15%, ацетилен -5,03% и меньше всего водорода -3,23%. Выявленные особенности обусловлены с одной стороны процессами диффузии газов из масла в атмосферу (низкое содержание водорода), с другой стороны высокой интенсивностью окислительных реакций в масел (высокое содержание этилена).

Таблица 1 – Распределение результатов ХАРГ по газам с максимальной концентрацией

Газ	Измерений	%
Не превышают предела хроматографа	942	12,74
H ₂	239	3,23
CH ₄	1514	20,48
C_2H_6	381	5,15
C ₂ H ₄	3545	47,96
C_2H_2	372	5,03
CH ₄ -C ₂ H ₄	75	1,01
CH ₄ -C ₂ H ₆	22	0,30
CH ₄ -C ₂ H ₂	7	0,09
CH ₄ -H ₂	15	0,20
C_2H_4 - C_2H_6	66	0,89
C ₂ H ₄ -C ₂ H ₂	91	1,23
C ₂ H ₄ -H ₂	10	0,14
C_2H_6 - C_2H_2	32	0,43
CH ₄ -C ₂ H ₄ -C ₂ H ₆	35	0,47
CH ₄ -C ₂ H ₄ -C ₂ H ₂	1	0,01
CH ₄ -C ₂ H ₄ -H ₂	2	0,03
CH ₄ -C ₂ H ₆ -C ₂ H ₂	3	0,04
CH ₄ -C ₂ H ₆ -H ₂	1	0,01
C ₂ H ₄ -C ₂ H ₆ -C ₂ H ₂	33	0,45
C ₂ H ₄ -C ₂ H ₆ -H ₂	2	0,03
$CH_4-C_2H_4-C_2H_6-C_2H_2$	2	0,03
$CH_4-C_2H_4-C_2H_6-H_2$	3	0,04
Итого	7393	100

Приведенные особенности требуют уточнения граничных значений концентраций газов и корректировки пределов температурных диапазонов термических дефектов для маслонаполненного негерметичного оборудования.