## ОСОБЕННОСТИ ДЕФОРМИРОВАНИЯ ПОЛОСЫ В МЕСТЕ ИЗГИБА ПРИ ПРОФИЛИРОВАНИИ

Плеснецов Ю.А., Джорубов Т.А.

Национальный технический университет «Харьковский политехнический институт», г. Харьков

В реальных процессах получения профилей в валках профилегибочных станов в месте изгиба полосы развивается утонение. Величина максимальной деформации на наружной и внутренней поверхностях места изгиба в зависимости от относительного внутреннего радиуса изгиба приводится в табл. 1 и на рис. 1. На рис. 1 приведены кривые изменения деформации на наружной (1') и внутренней (2') поверхности места изгиба, в зависимости относительного внутреннего радиуса изгиба. Из графика полученные величины деформаций наружной поверхности места изгиба полностью совпадают для случая чистого изгиба, на внутренней поверхности — только до относительного внутреннего радиуса  $r_s$ =3. При изгибе на относительный внутренний радиус  $r_s < 3$  величины деформации возрастают более интенсивно, чем в случае чистого изгиба. При  $r_s < 0.05$  отношение становится больше 8 и должна разрушиться внутренняя поверхность места изгиба.

Таблица 1 — Максимальные деформации на наружной и внутренней поверхности места изгиба в зависимости от относительного внутреннего радиуса изгиба

| Зависимость деформации от относительного внутреннего радиуса изгиба |       |       |       |       |       |       |       |        |
|---------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--------|
| $r_{\!\scriptscriptstyle \mathrm{B}}$                               | 0,1   | 0,25  | 0,5   | 1     | 1,5   | 2     | 3     | 5      |
| $e_{\scriptscriptstyle \mathrm{H}}$                                 | 0,849 | 0,671 | 0,748 | 0,331 | 0,218 | 0,192 | 0,133 | 0,0824 |
| $e_{\scriptscriptstyle \mathrm{B}}$                                 | 2,691 | 1,211 | 0,742 | 0,441 | 0,332 | 0,244 | 0,15  | 0,093  |

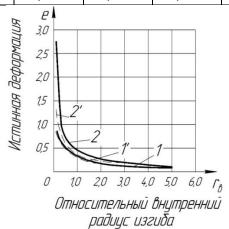



Рис. 1. Зависимость максимальных величин деформаций места изгиба: а - от относительного внутреннего радиуса изгиба: 1' - на наружной поверхности; 2' - на внутренней поверхности; б - для случая чистого изгиба: 1 - на наружной поверхности; 2 - на внутренней поверхности

Полученные результаты позволяют объяснить встречающиеся в практике явления образования трещин со стороны внутреннего радиуса при изгибе полосы с малыми значениями относительного внутреннего радиуса.