
ISSN 2222-2944. Інформаційні технології: наука, техніка, технологія, освіта, здоров‘я. 2018. Ч. ІV.

165

THE DINING PHILOSOPHERS PROBLEM AND METHODS

FOR SOLVING IT

Hlavcheva D.M.1, Yaloveha V.A.2

1National Technical University

«Kharkiv Politechnic Institute»,
2V.N. Karazin Kharkiv National University,

Kharkiv

As we know, an object can have synchronized methods or other forms of

locking that prevent tasks from accessing that object until the mutex is released.

Tasks can become blocked. Thus it’s possible for one task to get stuck waiting for

another task, which in turn waits for another task, and so on, until the chain leads

back to a task waiting on the first one. Then we get a continuous loop of tasks waiting

on each other, and no one can move. This is called deadlock.

The dining philosophers problem, invented by Edsger Dijkstra [1], is the

classic demonstration of deadlock. The basic description specifies five philosophers.

They spend some time thinking and a part of their time eating. While they are

thinking, they don’t need any shared resources, but they eat using a limited number of

chopsticks [2]. Clearly, each philosopher will require two chopsticks in order to eat.

Philosophers have only five chopsticks (more generally, the same number of

chopsticks as philosophers). When a philosopher wants to eat, that philosopher must

pick up the chopstick to the left and the one to the right. If the philosopher on either

side is using a desired chopstick, our philosopher must wait until the necessary

chopsticks become available. If the philosophers spend very little time thinking, they

will all be competing for the chopsticks while they try to eat, and we can get deadlock

situation, because philosopher is trying to pick up its chopsticks in a particular

sequence: first right, then left.

It is considered several ways of solving problem [3]. If the last philosopher is

initialized to try to get the left chopstick first and then the right, that philosopher will

never prevent the philosopher on the immediate right from picking up their chopstick.

Another solution is based on numbering of chopsticks and philosophers took the first

chopstick with the smallest number. On the other hand, we can require one person

less than the number of chopsticks to sit around the table at the same time [4]. All

solutions were programmed on JAVA and C++ languages. We used synchronized

methods to prevent tasks from accessing objects applying Brian’s Rule of

Synchronization and ExecutorService class to generate Thread.

References:

1. Dijkstra E.W. Some beautiful arguments using mathematical induction / Dijkstra E.W.

// Acta Informatica. – 1980. – Vol. 13, No. 1. – P. 1-8.

2. Eckel B. Thinking in Java 4-th / Eckel B. – Massachusetts: Prentice Hall, 2006. – Vol. 8.

– 1079 р.

3. Goetz B. Java concurrency in practice / Goetz B., Peierls T. – Pearson Education, 2006. –

234 р.

4. Lea D. Concurrent programming in Java: design principles and patterns / Lea D. –

Addison-Wesley Professional, 2000. – 318 р.

