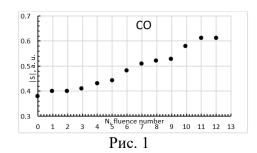
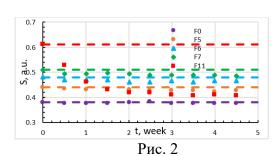
ОПТИМИЗАЦИЯ ГАЗОЧУВСТВИТЕЛЬНЫХ СВОЙСТВ nc-SiC ПЛЕНОК В УСЛОВИЯХ ОБЛУЧЕНИЯ ВЫСОКОЭНЕРГЕТИЧНЫМИ ЭЛЕКТРОНАМИ

Любов Д. В.¹, Семёнов А. В.¹, Махонин Н. В.¹, Борискин В. Н.²

¹ Национальный технический университет


«Харьковский политехнический институт»,


² Национальный научный центр

"Харьковский физико-технический институт", г. Харьков

Газовые сенсоры являются важнейшими приборами систем мониторинга природной и техногенной атмосферы на Земле. За последние тридцать лет распространение получили, хорошо разработанные широкое полупроводниковые газовые сенсоры, обладающие замечательным набором свойств: стоимость/эффективность, надежность, низкое энергопотребление, чувствительность И маленький размер. Дальнейшее развитие высокая технологии регистрации газов полупроводниковыми сенсорами связано с исследованиями способов улучшения характеристик приборов и повышением стойкости к внешним воздействиям. В настоящей работе мы исследовали радиационной стойкости возможность диапазон И оптимизации газочувствительных свойств (S) пленок нанокристаллического SiC (nc-SiC) в условиях облучения высокоэнергетичными (10 МэВ) электронами.

Образцы пленок nc–SiC на подложках из сапфира поэтапно облучали сканирующим импульсным пучком электронов на ускорителе электронов КУТ. Образцы облучали поэтапно 12 раз с нарастающими флюэнсами. Установлено: nc-SiC пленки сохраняют газочувствительные свойства в диапазоне флюєнсов $5*10^{14}$ - $9*10^{19}$ см⁻²; с увеличением флюэнса облучения электронами величина S для O_2 , CO, O_3 плавно растет, достигая увеличения $K_E(O_2) = 7$, $K_E(CO) = 1,58$ (Puc.1), $K_E(O_3) = 3,16$ для $T=280^0$ С при максимальном флюэнсе $9*10^{19}$ см⁻². Зависимость S для CH_4 имеет широкий максимум в диапазоне флюэнсов $F5=5*10^{16}$ - $F8=10^{18}$ см⁻² с максимальным значением $K_E(CH_4) = 1,28$.

Оптимальными флюэнсами облучения электронами nc-SiC пленок для повышения газовой чувствительности является диапазон 10^{17} - 10^{18} см⁻² . После обработки электронами в указаном диапазоне пленки достигают значений увеличения S $K_E(O_2) = 3.4$, $K_E(CO) = 1,47$ (Puc.2), $K_E(O_3) = 2,0$ для T = 280 C, $K_E(CH_4) = 1,28$, которые незначительно изменяются во времени. При обработке более высокими флюэнсами увеличенная величина S является нестабильной во времени (Puc.2).