УДК 621.3:537.311

М.И. Баранов

НОВЫЙ ЭЛЕКТРОФИЗИЧЕСКИЙ ПОДХОД ПО ТЕОРЕТИЧЕСКОМУ ОБОСНОВАНИЮ ЯВЛЕНИЯ ЭЛЕКТРОСТАТИЧЕСКОЙ ИНДУКЦИИ В НЕПОДВИЖНОМ МЕТАЛЛИЧЕСКОМ ПРОВОДНИКЕ

Викладені нові уявлення про можливий електрофізичний мікромеханізм, що приводить до виникнення на протилежних поверхнях нерухомого незарядженого масивного плоского металевого провідника, що знаходиться в однорідному електростатичному полі іншого нерухомого позитивно зарядженого масивного плоского металевого провідника, індукційних зв'язаних зарядів і потенціалів протилежної полярності. Показано, що даний мікромеханізм дозволяє теоретично обґрунтувати явище електростатичній індукції в двозв'язній системі фізичних тіл.

Изложены новые представления о возможном электрофизическом микромеханизме, приводящем к возникновению на противоположных поверхностях неподвижного незаряженного массивного плоского металлического проводника, находящегося в однородном электростатическом поле другого неподвижного положительно заряженного массивного плоского металлического проводника, индукционных связанных зарядов и потенциалов противоположной полярности. Показано, что данный микромеханизм позволяет теоретически обосновать явление электростатической индукции в двухсвязной системе физических тел.

ВВЕДЕНИЕ

Несмотря на то, что явление электростатической индукции (ЭСИ) было открыто опытным путем английским физиком Стивеном Грэйем более 270 лет тому назад (в 1729 г.) [1, 2], по мнению автора, до сих пор в мировой электротехнической литературе отсутствует описание физического микромеханизма возникновения и протекания явления ЭСИ даже для простейших систем металлических тел (проводников). Как известно, явление ЭСИ связано с наведением в электронейтральном проводящем теле на его взаимно противоположных поверхностях индукционных связанных электрических зарядов противоположной полярности из-за действия на него распределенного по поверхности свободного электрического заряда другого заряженного проводящего тела, расположенного через изоляцию вблизи этого незаряженного тела [1, 3]. Явление ЭСИ широко используется в технике электростатического экранирования электроизмерительных приборов и радиоэлектронных средств при их защите от воздействия внешних электрических полей, электротехнике и технике высоких напряжений (например, в низко- и высоковольтных конденсаторах с металлическими обкладками, являющихся в настоящее время одним из основных видов накопителей электрической энергии) [4, 5]. Не обойтись без применения явления ЭСИ при объяснении природных электрофизических процессов, протекающих в земной воздушной атмосфере и, в особенности в предгрозовой период в ней (например, в системе "заряженное облакоземля") [6]. В связи с вышеизложенным определенный научный и практический интерес в области электричества представляет теоретическое описание при определенных допущениях электрофизического микромеханизма, лежащего в основе явления ЭСИ для проводящих тел различной формы. Подобному приближенному описанию возможного физического микромеханизма явления ЭСИ для наиболее простейшей двухсвязной системы изолированных друг от друга проводящих тел и посвящена данная работа.

1. ПОСТАНОВКА ЗАДАЧИ ИЗУЧЕНИЯ ЯВЛЕНИЯ ЭСИ В НЕПОДВИЖНОМ МЕТАЛЛИЧЕСКОМ ПРОВОДНИКЕ

Рассмотрим в декартовой системе координат размещенное в воздушном пространстве изолированно от земли при нормальных атмосферных условиях (давление воздуха составляет 1,013·10⁵ Па, а его температура равна 0 °С [3]) неподвижное массивное металлическое изотропное плоское электронейтральное тело 2 толщиной d₂ с двумя плоскими параллельными поверхностями S₂, одна из которых расположена на расстоянии h от плоской поверхности S₁ другого неподвижного массивного металлического изотропного плоского положительно заряженного тела 1 толщиной d_1 (рис. 1). Примем, что незаряженное тело 2 было предварительно внесено во внешнее однородное электростатическое поле заряженного металлического тела 1. Пусть $S_1 = S_2$, а плотность некомпенсированных свободных зарядов на наружной плоской поверхности S_l положительно заряженного тела l постоянна и равна $\sigma_l = q_l / S_l$, где q_l – положительный электрический заряд, находящийся на плоской поверхности S₁ неподвижного проводника 1. Считаем, что заряженной поверхности S_1 с электрическим зарядом q_1 проводящего тела 1 соответствует положительный электрический потенциал ф₁. Полагаем, что величина изоляционного зазора h между смежными идентичными плоскими поверхностями S₁ и S₂ рассматриваемых тел 1 и 2 существенно меньше их геометрических размеров (ширин, длин и толщин d_1 и d_2). Поэтому влиянием краевых областей в исследуемой системе двух проводящих тел на распределение между этими телами электростатического поля пренебрегаем и допускаем, что данные металлические проводники расположены в воздушной среде близко друг к другу и между ними существует однородное электростатическое поле с результирующей напряженностью Е₁.

Рис. 1. Расчетная конструкция заряженного *1* и незаряженного *2* массивных плоских металлических проводников, используемая при описании электрофизического микромеханизма возникновения и протекания в ней явления ЭСИ

Принимаем, что в неподвижных заряженном 1 и незаряженном 2 металлических проводниках в соответствии с положениями физики твердого тела присутствуют хаотично движущиеся с тепловой скоростью $v_F \ll v_c (v_c = 3.10^8 \text{ м/с} - \text{скорость света в вакуу-}$ ме) в их материалах нерелятивистские свободные электроны [3], имеющие элементарный отрицательный электрический заряд, равный $e_0 = 1,602 \cdot 10^{-19}$ Кл [7]. Заряды свободных электронов тел 1 и 2 в принятой инерциальной системе отсчета можно считать точечными, т.к. диаметр данных носителей электричества много меньше линейных размеров этих физических тел. Полагаем, что образуемые такими свободными зарядами толщины заряженных слоев на поверхностях S_1 и S_2 пренебрежимо малы. Требуется на основе известных положений классической физики в принятом приближении описать электрофизический микромеханизм, обеспечивающий процесс распределения индукционных электрических зарядов в неподвижном металлическом электронейтральном теле 2, предварительно внесенном в однородное электростатическое поле положительно заряженного плоского металлического тела *I*, и объясняющий для незаряженного проводника 2 явление ЭСИ в принятой простейшей системе двух физических проводящих тел.

2. ОСНОВНЫЕ ЭЛЕКТРОФИЗИЧЕСКИЕ ИДЕИ И МАТЕМАТИЧЕСКИЕ СООТНОШЕНИЯ ПРЕДЛАГАЕМОГО ПОДХОДА

После внесения незаряженного металлического проводника 2 в однородное электростатическое поле с результирующей напряженностью E_1 заряженного металлического тела 1 на свободные электроны этого электронейтрального проводника толщиной d_2 начнут действовать силы их электростатического взаимодействия с положительным зарядом q_1 тела 1, равномерно распределенным по его плоской поверхности S_1 с постоянной плотностью σ_1 . Прежде всего, это будет касаться свободных электронов металлического тела 2, оказавшихся вблизи поверхности S_2 , прилегающей к воздушному зазору h. Электрический заряд q_1 с учетом фундаментального закона квантования любого

заряда [8] можно представить в виде системы точечных положительных зарядов, насчитывающей число таких свободных зарядов q_1 / e_0 на поверхности S_1 и создающей в воздухе наложением своих полей результирующее внешнее электростатическое поле с напряженностью Е₁. Данные электростатические силы между разноименно заряженными точечными электрическими зарядами рассматриваемых металлических тел вызовут определенное смещение на величину Δy_e вдоль ширины d_2 свободных электронов незаряженного проводника 2 в сторону положительно заряженного тела 1 и его плоской поверхности S₁. В рассматриваемом случае максимальную суммарную силу электростатического притяжения F₂₁ свободных электронов в количестве q_2 / e_0 на плоской поверхности S₂ неподвижного незаряженного проводника 2 к неподвижному заряженному телу *l* с числом точечных свободных зарядов q_1 / e_0 на его смежной плоской поверхности S₁ в соответствии с законом Кулона для двух неподвижных точечных электрических зарядов и принципом суперпозиции электрических полей (сил) в скалярной форме записи можно представить в следующем приближенном виде [3]:

$$F_{2I} = \frac{\sigma_1 \cdot S_1 \cdot q_2}{4 \cdot \pi \cdot \varepsilon_0 \cdot h^2}, \qquad (1)$$

где q_2 – индукционный отрицательный связанный электрический заряд, возникающий на плоской поверхности S_2 проводника 2, прилегающей через воздушную изоляцию к идентичной плоской поверхности S_1 положительно заряженного тела l; $\varepsilon_0 = 8,854 \cdot 10^{-12} \text{ Ф/м} - электрическая постоянная [7].$

Природа возникновения на поверхностях S₂ электронейтрального проводника 2 связанных зарядов q₂ разной полярности обуславливается кулоновским взаимодействием свободных зарядов проводящих тел 1 и 2. Так, появление суммарной кулоновской силы F_{21} согласно (1) и вызванного ею смещения влево на указанную величину Δv_e свободных электронов тела 2 в исследуемой системе физических тел приводит к тому, что на плоской поверхности S₂ электронейтрального проводника 2, прилегающей к заряженному телу *1*, появляется избыток свободных электронов с суммарным связанным отрицательным электрическим зарядом q_2 и ее отрицательным потенциалом $-\phi_2$, а на его противоположной и удаленной от металлического тела *1* другой плоской поверхности S₂ – недостаток свободных электронов с суммарным связанным положительным электрическим зарядом q₂ и ее положительным потенциалом + ф2. Алгебраическая сумма этих связанных отрицательных и положительных зарядов (потенциалов) на смежных поверхностях S₂ проводника 2 в соответствии с фундаментальным законом сохранения электрического заряда [3, 4] будет всегда равной нулю. С учетом используемых допущений в первом приближении вначале можно принять, что появляющийся на обращенной к заряженному металлическому телу 1 плоской поверхности S₂ проводника 2 индукционный связанный электрический заряд при достаточно малом воздушном зазоре h ($h \ll d_1$, $h \ll d_2$, $h \ll S_1^{-1/2}$, и $h \ll S_2^{-1/2}$) характеризуется модулем поверхностной плотности σ_2 , приближенно равным $\sigma_2 = \sigma_1 = q_2 / S_2$. Тогда выражение (1) при принятом условии $S_1 = S_2$ можно записать в виде:

$$F_{2I} = \frac{\sigma_I^2 \cdot \mathbf{S}_I^2}{4 \cdot \pi \cdot \varepsilon_0 \cdot h^2} \,. \tag{2}$$

Из (2) для максимальной элементарной усредненной кулоновской силы притяжения, приходящейся на один смещаемый влево к положительно заряженному телу l (см. рис. 1) на величину Δy_e свободный электрон незаряженного неподвижного металлического проводника 2, имеем:

$$F_{20} = \frac{\mathbf{e}_0 \cdot \mathbf{F}_{2I}}{\sigma_2 \cdot S_2} = \frac{\mathbf{e}_0 \cdot \sigma_1 \cdot \mathbf{S}_I}{4 \cdot \pi \cdot \mathbf{e}_0 \cdot h^2} \,. \tag{3}$$

В процессе указанного упорядоченного направленного смещения на Δy_e в неподвижном незаряженном проводнике 2 свободных электронов внутри этого проводника в направлении, противоположном оси ОУ и вектору результирующей напряженности Е₁ внешнего электростатического поля в воздушном зазоре h, будет кратковременно возникать индуцированное электрическое поле его перемещающихся свободных зарядов с напряженностью Е2. Максимальное значение этой напряженности Е2, силовым образом воздействующей в направлении оси ОУ на элементарные заряды смещающихся влево, согласно рис. 1, свободных электронов металлического проводника 2 и уравновешивающей таким путем действующую на них внешнюю кулоновскую силу притяжения F₂₁, а также ограничивающей их данное однонаправленное смещение внутри его материала, можно определить из следующего скалярного равенства:

$$F_{20} = e_0 \cdot E_2 \,. \tag{4}$$

Из (3, 4) для напряженности E_2 кратковременного внутреннего индуцированного электрического поля в электронейтральном проводящем теле 2 получаем:

$$E_2 = \frac{\sigma_I \cdot S_I}{4 \cdot \pi \cdot \varepsilon_0 \cdot h^2} \,. \tag{5}$$

Учитывая, что в соответствии с теоремой Остроградского-Гаусса для рассматриваемой системы двух физических тел $E_I = \sigma_I / \epsilon_0$ [8], то выражение (5) можно представить в следующем виде:

$$E_2 = \frac{E_I \cdot S_I}{4 \cdot \pi \cdot h^2}.$$
 (6)

Из (6) следует, что при $S_l > 4 \cdot \pi \cdot h^2$ в принятом приближении значение напряженности Е2 кратковременно возникающего в течение т внутреннего электрического поля в теле 2 будет превышать значение результирующей напряженности Е₁ внешнего электростатического поля в воздушном зазоре *h*. При удалении незаряженного тела 2 от заряженного тела 1 величина Е2 будет уменьшаться и при неограниченном возрастании *h* будет стремиться к нулю. Значение τ, в соответствии с [8], по порядку величины следует рассматривать как среднее время свободного пробега τ_е электрона между двумя последовательными актами его столкновения с ионами (узлами) кристаллической решетки изотропного материала металлического тела 2. Как известно, величина т_е (время релаксации свободного электрона) для основных проводниковых материалов, применяемых в электротехнике, численно характеризуется значением порядка 10⁻¹⁴ с [8, 9].

После такого практически мгновенного смещения на величину Δy_e свободных электронов исследуемого электронейтрального металлического проводника 2, появления на его противоположных поверхностях S₂ связанных зарядов противоположной полярности с модулем поверхностной плотности приближенно равным $\sigma_2 = \sigma_I$, а также возникновения на указанных поверхностях S₂ наведенных (индуцированных) электрических потенциалов - ϕ_2 и + ϕ_2 и наступления в завершение равновесия его электрических зарядов (отсутствие некомпенсированных зарядов и электрического тока внутри проводника) индуцированное электрическое поле внутри данного проводника становится равным нулю ($E_2 = 0$). Данное научное положение находится в полном соответствии с теоремой Остроградского-Гаусса для электрического поля [3, 8].

Усредненное значение упорядоченного смещения Δy_e свободных электронов незаряженного металлического проводника 2 можно определить из следующего выражения [10]:

$$\Delta y_e = v_{ye} \cdot \tau_e \,, \tag{7}$$

где *v_{ye}* – усредненная скорость малого смещения (малого дрейфа) свободных электронов проводника 2.

Усредненную скорость v_{ye} однонаправленного упорядоченного смещения (кратковременного дрейфа) свободных электронов в неподвижном проводнике 2 найдем из формулы [10]:

$$v_{\gamma e} = a_e \cdot \tau_e \,, \tag{8}$$

где a_e – усредненное ускорение свободных электронов, смещаемых на Δy_e за время τ_e в незаряженном металлическом проводнике внешним электростатическим полем с результирующей напряженностью E_1 в воздушном зазоре h.

Для нахождения усредненного ускорения a_e смещаемых в электронейтральном проводящем теле 2 свободных электронов воспользуемся приближенным уравнением их движения:

$$F_{20} = m_e \cdot a_e, \tag{9}$$

где $m_e = 9,108 \cdot 10^{-31}$ кг – масса покоя электрона [7].

В результате с учетом (3) и (7) – (9) для максимальных усредненных значений ускорения a_e , скорости v_{ye} и смещения Δy_e свободных электронов в исследуемом незаряженном неподвижном плоском металлическом проводнике 2 получаем соответственно следующие расчетные соотношения:

$$a_e = \frac{\mathbf{e}_0 \cdot \boldsymbol{\sigma}_1 \cdot \boldsymbol{S}_1}{4 \cdot \boldsymbol{\pi} \cdot \boldsymbol{\varepsilon}_0 \cdot \boldsymbol{h}^2 \cdot \boldsymbol{m}_e}; \tag{10}$$

$$v_{ye} = \frac{\mathbf{e}_0 \cdot \boldsymbol{\sigma}_I \cdot \boldsymbol{S}_I \cdot \boldsymbol{\tau}_e}{4 \cdot \boldsymbol{\pi} \cdot \boldsymbol{\varepsilon}_0 \cdot \boldsymbol{h}^2 \cdot \boldsymbol{m}_e}; \tag{11}$$

$$\Delta y_e = \frac{\mathbf{e}_0 \cdot \boldsymbol{\sigma}_I \cdot \boldsymbol{S}_I \cdot \boldsymbol{\tau}_e^2}{4 \cdot \boldsymbol{\pi} \cdot \boldsymbol{\varepsilon}_0 \cdot \boldsymbol{h}^2 \cdot \boldsymbol{m}_e}; \qquad (12)$$

Значение среднего времени пробега τ_e для свободных электронов незаряженного металлического проводника 2 при принятых условиях и исходных данных будет оставаться практически неизменным [9, 10]. Поэтому согласно (10) – (12) значения a_e , v_{ye} и Δy_e будут определяться для тела 2, главным образом, величиной свободного электрического заряда $q_1 = \sigma_I \cdot S_1$ положительно заряженного тела 1 и величиной воздушного зазора h между проводящими телами 1 и 2. Чем больше q_1 и меньше h в рассматриваемой системе двух проводящих физических тел, тем будут и больше усредненные значения ускорения a_e , скорости v_{ye} и смещения Δy_e свободных электронов в незаряженном неподвижном металлическом проводнике 2.

При $S_l >> h^2$ и $S_2 >> h^2$ для взаимной электрической емкости C_{l2} между рассматриваемыми плоскими проводящими телами l и 2 справедливо следующее соотношение [3]:

$$C_{12} = \frac{\varepsilon_0 \cdot S_1}{h} \,. \tag{13}$$

С другой стороны, для величины взаимной электрической емкости C_{12} в исследуемой системе двух плоских проводящих тел l и 2 с прилегающими друг к другу через малый воздушный зазор h поверхностями $S_1 = S_2$ и свободными зарядами $q_1 = q_2$ на них приближенно имеем следующее выражение [3]:

$$C_{12} = \frac{\sigma_1 \cdot S_1}{(\varphi_1 - \varphi_2)}.$$
 (14)

Тогда из (13) и (14) для максимального модуля наведенного электрического потенциала φ_2 на противоположных плоских поверхностях S_2 неподвижного электронейтрального проводника 2, внесенного в электростатическое поле заряженного плоского проводящего тела I с поверхностной плотностью его свободного заряда σ_I , приближенно получаем:

$$\varphi_2 = \varphi_I - \frac{\sigma_I \cdot h}{\varepsilon_0}. \tag{15}$$

Из (15) можно оценить то расстояние по воздуху $h_0 \ll S_1^{1/2}$, при удалении на которое исследуемого незаряженного проводящего тела 2 от положительно заряженного проводящего тела 1 с неизменными величинами заряда q_1 и его поверхностной плотности σ_1 электрический потенциал φ_2 на плоских противоположно расположенных поверхностях S_2 электронейтрального тела 2 будет приближаться к нулю:

$$h_0 = \frac{\varepsilon_0 \cdot \varphi_I}{\sigma_I} \,. \tag{16}$$

В этом случае (при $h_0 = \varepsilon_0 \cdot \varphi_l / \sigma_l$) взаимная электрическая емкость С₁₂ двух плоских проводящих тел 1 и 2 исследуемой электрофизической системы будет приближаться к электрической емкости уединенного плоского проводящего тела *l*, равной $C_l = \sigma_l \cdot S_l / \phi_l$ и соответственно меньшей чем С₁₂ согласно (14). Из (15) видно, что при уменьшении величины воздушного зазора h наведенный на плоских поверхностях S₂ металлического проводника 2 электрический потенциал ф2 по модулю будет увеличиваться и приближаться к электрическому потенциалу ф1 положительно заряженного тела 1. При этом взаимная электрическая емкость С12 этих тел будет также увеличиваться. Увеличение электрической емкости положительно заряженного неподвижного проводящего тела 1 с первоначальным потенциалом ф₁ при внесении в его электростатическое поле другого отделенного от него изоляционным зазором проводящего незаряженного тела (например, плоского электронейтрального проводника 2 согласно рис. 1) может быть объяснено снижением в исследуемой изолированной двухсвязной системе металлических проводников из-за проявления в ней ЭСИ результирующего электрического потенциала для заряженного тела *1*, равного ($\phi_1 - \phi_2$). Согласно (15) в рассматриваемом случае электрический потенциал ф₁ заряженного тела І будет определяться суммой двух слагаемых, одно из которых равно $\sigma_1 \cdot h / \epsilon_0$, а другое – ϕ_2 . Первое слагаемое при фиксированных параметрах выбранной геометрии исследуемой системы тел и ее изоляционной среды зависит от прежнего до приближения к телу 1 незаряженного проводника 2 значения поверхностной плотности σ_1 его неизменного свободного заряда q_1 , а второе слагаемое в виде постоянной при этом величины ф2 выступает в качестве компенсационной добавки. При удалении незаряженного металлического проводника 2 от заряженного неподвижного проводящего массивного тела 1 электрический потенциал φ_2 для тела 2 уменьшается, а разность электрических потенциалов ($\phi_1 - \phi_2$) в указанной электрофизической системе тел возрастает, что и приводит при неизменном значении свободного заряда q1 на плоской поверхности S₁ к уменьшению электрической емкости металлического тела 1.

Отметим, что при использовании (15) для нахождения наведенного электрического потенциала φ_2 величину электрического потенциала φ_1 заряженного уединенного плоского металлического проводника *1* толщиной d_1 в частном и весьма распространенном на практике случае его дисковой формы радиусом R_1 с учетом принятых допущений и теории электростатического поля можно определить в следующем аналитическом виде [3]:

$$\varphi_I = \frac{\sigma_I}{4 \cdot \pi \cdot \varepsilon_0} \cdot \oint_{S_1} \frac{ds}{r}, \qquad (17)$$

где *ds* и *r* – малый участок и его текущий радиус на круглой плоской торцевой поверхности $S_I = \pi \cdot R_I^2$ по-ложительно заряженного проводящего диска *l*.

При $ds = 2 \cdot \pi \cdot r \cdot dr$ и замене в (17) интегрирования по торцевой поверхности S_I массивного дискового проводника I радиусом R_I , прилегающей к воздушному зазору h, интегрированием по его радиусу в пределах от 0 до R_I для электрического потенциала φ_I такого положительно заряженного в нашем случае проводящего диска I получаем следующее приближенное расчетное соотношение:

$$\varphi_I = \frac{\sigma_I \cdot (S_I / \pi)^{1/2}}{2 \cdot \varepsilon_0} \,. \tag{18}$$

Аналогично (18) для модуля наведенного на идентичных плоских поверхностях S_2 электронейтрального диска 2 электрического потенциала φ_2 запишем следующее приближенное выражение:

$$\varphi_2 = \frac{\sigma_2 \cdot (S_2 / \pi)^{1/2}}{2 \cdot \varepsilon_0} \,. \tag{19}$$

Тогда из (19) с учетом (15) для модуля поверхностной плотности σ_2 индукционных связанных зарядов на противоположных плоских поверхностях S_2 незаряженного дискового металлического проводника 2 при $h \ll S_1^{1/2}$ и $h \ll S_2^{1/2}$ получаем следующую приближенную формулу:

$$\sigma_2 = \frac{2 \cdot (\varepsilon_0 \cdot \varphi_I - \sigma_I \cdot h)}{(S_2 / \pi)^{1/2}} \,. \tag{20}$$

Из (18) и (20) следует, что при малых значениях воздушного зазора h и $S_1 = S_2$ величина σ_2 приближается к величине поверхностной плотности σ_1 свободного заряда q_1 на плоской поверхности S_1 положительно заряженного дискового проводника 1. При $h = h_0 = \varepsilon_0 \cdot \varphi_1 / \sigma_1$ согласно (20) значение σ_2 в принятом приближении становится равным нулю.

3. ПРИМЕР РАСЧЕТА РЯДА ВЕЛИЧИН ДЛЯ ЯВЛЕНИЯ ЭСИ В НЕПОДВИЖНОМ МЕТАЛЛИЧЕСКОМ ПРОВОДНИКЕ

Выполним на основе приведенных расчетных соотношений численную оценку усредненных значений ускорения a_e , скорости v_{ye} и смещения Δy_e свободных электронов, а также напряженностей E_1 и E_2 электрического поля, электрических потенциалов φ_I и φ₂, поверхностной плотности σ₂ наведенного связанного заряда и зазора h_0 для размещенного в воздухе при нормальных атмосферных условиях и изолированного от земли незаряженного массивного однородного дискового медного проводника 2 толщиной $d_2 = 5 \cdot 10^{-3}$ м и радиусом $R_2 = 50 \cdot 10^{-3}$ м ($S_2 = 0.785 \cdot 10^{-2}$ м²), внесенного в сильное однородное электростатическое поле положительно заряженного идентичного дискового медного проводника $I (d_1 = 5 \cdot 10^{-3} \text{ м}; R_1 =$ $50 \cdot 10^{-3}$ м; $S_l = 0,785 \cdot 10^{-2}$ м²) с заданной поверхностной плотностью его свободного заряда $\sigma_l = 8,854 \cdot 10^{-7}$ Кл/м² [9, 11]. Пусть эти медные диски 1 и 2 размещены симметрично друг другу и как на рис. 1 образуют двухсвязную расчетную плоскую конструкцию с воздушным зазором $h = 1 \cdot 10^{-3}$ м, существенно меньшим чем величина $S_I^{1/2} = S_2^{1/2} = 0,088$ м. Для данных оценок последствий проявления ЭСИ в принятой расчетной модели двух дисковых медных проводников примем, что значение среднего времени пробега те для свободных электронов медного диска 2, рассчитанное на основе модели свободных электронов Зоммерфельда, составляет в соответствии с данными табл. 10. II из [9] величину, равную $\tau_e = 5,3 \cdot 10^{-14}$ с. Тогда в соответствии с (5) - (20) находим, что для принятого электротехнического случая искомые физические величины будут иметь следующие численные значения: $a_e = 1,1\cdot 10^{19} \text{ м/c}^2$; $v_{ye} = 5,8\cdot 10^5 \text{ м/c}$; $\Delta y_e = 3,1\cdot 10^{-8} \text{ м}$; $E_I = 10^5 \text{ B/m}$; $E_2 = 6,2\cdot 10^7 \text{ B/m}$; $\varphi_I = 2,5\cdot 10^3 \text{ B}$; $\varphi_2 = 2,4\cdot 10^3 \text{ B}$; $\sigma_2 = 8,5\cdot 10^{-7} \text{ Кл/m}^2$; $h_0 = 25\cdot 10^{-3} \text{ м}$. Видно, что полученные расчетные усредненные количественные значения ускорения a_e , скорости v_{ye} и смещения Δy_e для свободных электронов при явлении ЭСИ в принятой двухсвязной конструкции массивных медных дисков на много порядков превышают соответствующие значения для подобных величин при явлении электромагнитной индукции в равномерно движущемся со скоростью 10 м/с во внешнем сильном постоянном магнитном поле с индукцией 1 Тл перпендикулярно его силовым линиям круглом сплошном медном цилиндрическом проводнике радиусом 1.10⁻³ м и длиной

1 м [12]. Это дает основание заключить, что силы кулоновского взаимодействия между свободными зарядами взаимно изолированных и близко расположенных неподвижных металлических проводников по сравнению с электродинамическими силами Лоренца, действующими на них при движении этих проводников со стороны внешнего сильного постоянного магнитного поля, являются значительно более сильными и эффективными для генерирования (индуцирования) высоких электрических потенциалов на металлических макроповерхностях. Численное значение поверхностной плотности σ₂ наведенных связанных электрических зарядов на незаряженном медном диске 2 лишь на 4 % отличается от значения поверхностной плотности од положительного свободного электрического заряда на медном диске 1. Отметим и то, что в рассматриваемом примере расчета величина смещения $\Delta y_e = 3, 1 \cdot 10^{-8}$ м свободных электронов медного диска 2 приближается к средней длине λ_ρ их свободного пробега в меди, составляющей при принятых нормальных атмосферных условиях согласно данным табл. 10. II из [9] величину, равную $\lambda_e = 4.2 \cdot 10^{-8}$ м. Кроме того, представленные выше численные оценки значений напряженностей Е₁ и Е₂ свидетельствуют о том, что при явлении ЭСИ уровень кратковременного внутреннего индуцированного электрического поля (напряженность Е₂) в незаряженном проводнике 2 (в его приповерхностных слоях, прилегающих к воздушному зазору h) может на много превышать уровень внешнего сильного электростатического поля (напряженность E_l) от рядом расположенного с ним положительно заряженного проводника 1 с относительно большой поверхностной плотностью σ₁ его свободного заряда q₁. Для приведенного примера расчета отношение напряженностей этих электрических полей составляет $E_2 / E_1 = 620$. Оказывается, что при удалении в воздухе в исследуемой двухсвязной системе тел незаряженного плоского проводника 2 (при h $= 1.10^{-3}$ м) от положительно заряженного идентичного по геометрии плоского проводника 1 на расстояние h_0 < S₁^{1/2}, превышающее первоначальный воздушный зазор примерно в 25 раз (h_0 / h =25), явление ЭСИ в рассматриваемой системе плоских массивных металлических тел из-за резкого ослабления кулоновского взаимодействия свободного заряда q1 и зарядов свободных электронов диска 2 становится несущественным и наведенные на противоположных плоских поверхностях S₂ электронейтрального медного дискового проводника 2 электрические связанные заряды $q_2 =$ σ₂·S₂ и потенциалы φ₂ противоположной полярности становятся практически равными нулю.

ЗАКЛЮЧЕНИЕ

1. В основе физической сущности явления электростатической индукции в системе двух неподвижных близко расположенных изолированных воздушным зазором h друг от друга плоских металлических положительно заряженного l и незаряженного 2 проводников лежит кулоновское взаимодействие их положительных и отрицательных свободных зарядов, приводящее в незаряженном проводнике 2 к сверхбыстрому за время τ_e и сверхмалому на Δy_e смещению его свободных электронов к рядом размещенной поверхности S₁ заряженного проводника 1 с поверхностной плотностью σ_l его свободного положительного заряда q_1 и электрическим потенциалом ϕ_1 . Данное смещение свободных электронов в электронейтральном проводнике 2 приводит к наведению на его противоположных плоских поверхностях S₂ связанных электрических зарядов q2 противоположной полярности с их поверхностной плотностью о, и соответственно появлению на данных поверхностях индукционных электрических потенциалов ф2 противоположной полярности, алгебраическая сумма которых будет всегда равна нулю. Установлено, что в процессе смещения свободных электронов незаряженного проводника 2 внутри его материала возникает кратковременное индуцированное электрическое поле с напряженностью Е₂, которая может во много раз превышать результирующую напряженность Е₁ внешнего электростатического поля заряженного проводника *1* в воздушном зазоре *h* между указанными проводниками. После прекращения данного смещения свободных электронов в незаряженном проводнике 2 и установления в нем равновесия электрических зарядов его кратковременное индуцированное внутреннее электрическое поле исчезает ($E_2 = 0$), а наведенные связанные электрические заряды q2 с поверхностной плотностью σ₂ и потенциалы φ₂ противоположной полярности остаются присутствовать на его плоских противоположных поверхностях S₂. Показано, что удаление незаряженного проводника 2 от положительно заряженного проводника 1 из-за резкого уменьшения кулоновских сил взаимного притяжения элементарных свободных зарядов противоположной полярности этих проводников приводит к ослаблению проявления ЭСИ в исследуемой двухсвязной системе физических тел и исчезновению на некотором расстоянии по воздуху h_0 между ними наведенных связанных электрических зарядов q_2 , их плотностей σ_2 и потенциалов ф₂ противоположной полярности на электронейтральном металлическом проводнике 2.

2. Предложенный электрофизический микромеханизм явления ЭСИ в простейшей макроскопической системе двух неподвижных плоских массивных металлических проводников позволяет в принятом приближении теоретически обосновать появление или исчезновение наведенных связанных электрических зарядов q_2 и потенциалов φ_2 на противоположных плоских поверхностях S_2 незаряженного проводника 2, соответственно внесенного в однородное электростатическое поле положительно заряженного проводника 1 или удаленного из него.

3. Приведенный пример расчета количественных значений для основных физических величин, характерных для явления ЭСИ в высоковольтной системе неподвижных и разделенных малым воздушным зазором массивных заряженного и незаряженного медных дисков, указывает на работоспособность предложенного электрофизического микромеханизма возникновения и протекания данного явления в подобной конструкции конденсаторного типа.

СПИСОК ЛИТЕРАТУРЫ

1. Крыжановский Л.Н. Электростатическая индукция и электрофор в опытах XVIII в. // Электричество. – 1992. – № 4. – С.60-62.

2. Баранов М.И. Избранные вопросы электрофизики: Монография в 2-х томах. Том 1: Электрофизика и выдающиеся физики мира. – Харьков: Изд-во НТУ "ХПИ", 2008.– 252 с.

 Яворский Б.М., Детлаф А.А. Справочник по физике.– М.: Наука, 1990. – 624 с.
Нейман Л.Р., Демирчян К.С. Теоретические основы

4. Нейман Л.Р., Демирчян К.С. Теоретические основы электротехники: Учебник для вузов. Том 2. – Л.: Энергоиздат, 1981. – 416 с.

5. Техника высоких напряжений / Под общей ред. Г.С. Кучинского. – СПб: Изд-во ПЭИПК, 1998. – 700 с.

6. Кужекин И.П., Ларионов В.П., Прохоров Е.Н. Молния и молниезащита. – М.: Знак, 2003. – 330 с.

7. Кухлинг X. Справочник по физике / Пер. с нем. под ред. Е.М. Лейкина. – М: Мир, 1982. – 520 с.

8. Кузьмичев В.Е. Законы и формулы физики / Отв. ред. В.К. Тартаковский. – Киев: Наукова думка, 1989. – 864 с.

9. Кнопфель Г. Сверхсильные импульсные магнитные поля. – М.: Мир, 1972. – 391 с.

 Баранов М.Й. Упрощенная математическая модель микропроцессов в проводнике с электрическим током проводимости // Електротехніка і електромеханіка. – 2006. – №2. – С. 66-70.

11. Баранов М.И. Избранные вопросы электрофизики: Монография в 2-х томах. Том 2, Кн. 1: Теория электрофизических эффектов и задач. – Харьков: Изд-во НТУ "ХПИ", 2009. – 384 с.

12. Баранов М.И. Новый электрофизический подход по теоретическому обоснованию явления электромагнитной индукции Фарадея в движущемся металлическом проводнике // Електротехніка і електромеханіка. – 2010. – № 1.– С. 24-28.

Поступила 12.10.2009

Баранов Михаил Иванович, д.т.н., с.н.с.

НИПКИ "Молния" Национального технического университета "Харьковский политехнический институт" Украина, 61013, Харьков, ул. Шевченко, 47, НИПКИ "Молния" НТУ "ХПИ"

тел. (057) 707-68-41, e-mail: eft@kpi.kharkov.ua

M.I. Baranov

A new electrophysical approach to theory of electrostatic induction phenomenon in a stationary metallic conductor.

The paper introduces new ideas of possible electrophysical micromechanism causing generation of inductively coupled charges and potentials of opposite polarity on the opposite surfaces of a massive stationary uncharged flat metallic conductor placed in the homogeneous electrostatic field of another massive positively charged flat metallic conductor. It is shown that this micromechanism allows theoretical justification of electrostatic induction phenomenon in a doubly connected system of physical bodies.

Key words – metallic conductor, electrostatic field, new electrophysical micromechanism, electrostatic induction.