

Корпуса реакторов производства ŠKODA история и будущее (?)

Ян Здебор, к.т.н.

Член Инженерной академии Чешской Республики Заместитель декана машиностроительного факултета Технический советник генерального директора ŠKODA JS

Проект "Развитие международного сотрудничества с украинскими ВУЗами в областях качества, энергетики и транспорта" г. Харьков, 11/2018

История

- 1859 основание общества ŠKODA
- 1956 начало ядерной программы на предприятии ŠKODA
- 1974 начало программы производства ВВЭР
- 1980 изготовлен первый реактор типа ВВЭР-440
- 1989 изготовлен первый реактор типа ВВЭР-1000
- 1993 начало программы производства контейнеров
- 1993 приватизация и основание ŠKODA a.s. (промышленный холдинг) и дочернего общества ŠKODA JS s.r.o.
- 1999 преобразование общества с ограниченной ответственностью в акционерное общество
- 2004 приобретение ŠKODA JS a.s. группой ОАО ОМЗ
- 2010 первая поставка компонентов реактора типа EPR
- 2017 крупнейший среднеевропейский поставщик в области атомной энергетики, персонал свыше 1100 человек

Эмиль Шкода (1839-1900) Основатель предприятия ŠKODA

Эволюция концепции корпусов для АЭС с реакторами типа PWR

•устранеие продольных сварных швов •снижение количества кольцевых сварных швов •устранение свархого шва в области активной зоны •понижение цены

Корпуса ядерных реакторов должны обеспечивать длительную безопасную и надежную эксплуатацию в условиях высокого давления, температуры и радиационной нагрузки

• В общем данные стали должны иметь:

- высокие прочностные свойства при эксплуатации при рабочих температурах (Rp0,2 и Rm)

- высокую стойкость к хрупкому разрушению по всей толщине стены корпуса реактора

- высокую стойкость к радиационному и температурному охрупчиванию в эксплуатационных условиях

- хорошую технологическую обрабатываемость
- очень хорошую свариваемость
- Ключевым является химический состав и концентрация загрязнений в первую очередь в области напротив активной зоны реактора, т.н. "beltline region"
- Кодовая допустимость согласно стандартам ASME, RCC-M, КТА, GOST(PNAE-G), NTD A.S.I. Sekce II (инструкция R.G. 1.85)

Требования, предъявляемые к материалам корпуса реактора

Тренд снижения концентрации важных загрязнений в сталях для корпусов реакторов

Требования, предъявляемые к материалам корпуса реактора

Основной химический состав сталей для корпусов реакторов PWR (вес.%)

Сталь	Страна	C	Mn	Si	Р	S	Cr	Ni	Мо	V
A-508 Gr.3Cl.1	США	0,15- 0,25	1,20- 1,50	0,15- 0,35	max. 0,025	max. 0,025	max. 0,25	0,40- 1,00	0,45- 0,60	max. 0,05
16 MND 5	Франция	0,16	1,38	0,24	0,005	0,008	0,17	0,70	0,50	0,005
22MnMoNi55	Германия	0,17- 0,23	1,20- 1,50	0,15- 0,30	max. 0,015	max. 0,015	max. 0,02	0,45- 0,80	0,45- 0,60	max. 0,02
15Ch2MFA	Россия	0,13- 0,18	0,30- 0,60	0,17- 0,37	max. 0,025	max. 0,025	2,50- 3,00	max. 0,40	0,60- 0,80	0,25- 0,35
15Ch2NMFA	Россия	0,13- 0,18	0,30- 0,60	0,17- 0,37	max. 0,020	max. 0,020	1,80- 2,30	1,00- 1,50	0,50- 0,70	max. 0,10

Корпус реактора для АЭС А1 освоение технологии производства в ŠKODA Пльзень

Обзор блоков АЭС

с корпусом реактора производства ŠKODA

АЭС	Кол-во и тип блоков	Год поставки	Генеральная поставка технологической части АЭС	Рабочий проект <u>1</u> 0	Производство компонентов ас	Комплектация	нтура огиче женном	Пуско-наладка	Актуальное состояние
Богунице А1, Словакия	1 x HWGCR (150MWe)	1965-72	1	1	1	1	~	~	в ликвидации
Пакш, Венгрия	4 x VVER 440 / V-213	1980-87			√ *		√ *	LULLI	эксплуатируется
Богунице V2, Словакия	2 x VVER 440 / V-213	1982-85		1	1	1	1	1	эксплуатируется (блок 1 - 1984, блок 2 - 1985)
Дукованы, Чешская Республика	4 x VVER 440 / V-213	1982-87		1	1	1	1	1	эксплуатируется (блок 1-1985, блок 2 - 1986, блок 3 - 1987, блок 4 -1988)
Норд, Германия	3 x VVER 440 / V-213	1982-88			1	K	*		в ликвидации
Жарновец, Польша	4 x VVER 440 / V-213	1986-88			~				проект отменен
Моховце, Словакия	4 x VVER 440 / V-213	1987-99		1	~	~	1	~	блоки 1,2 эксплуатируются с 1998 (1999)
Белене, Болгария	1 x VVER 1000 / V-320	1988			1				планируемое завершение 2013 - 2015
Темелин, Чешская Республика	2 x VVER 1000 / V-320	1991-2003		1	1	~	1	~	в эксплуатации (блок 1 - 2002, блок 2 - 2003)

- Проектировщик ZNR ОКБ Гидропресс, г. Подольск, Московская область, РФ (ГОСГОРТЕХНАДЗОР, ЦНИИТМАШ)
- Требование по обеспечению транспортируемости корпусов реактора ВВЭР по железной дороге ограничивало размер корпусов, в первую очередь, по диаметру.
- Из этого следует:
 - более высокий флюенс нейтроном (меньше водяной зазор между внутренней стенкой реактора и ТВС)
 - более жесткие требования по чистоте материала корпуса реактора
 - меньше толщина стены, что приводит к необходимости повышения прочностных свойств

Сравнение основных параметров корпусов реакторов ВВЭР-440 и ВВЭР-1000

Tlaková nádoba	VVER 440	VVER 1000
Výška tlakové nádoby [mm]	11805	10897
Vnější průměr TNR přes nátrubky [mm]	4700	5260
Počet a průměr nátrubků [mm]	12 x 500	8 x 850
Počet nátrubků od PG	12	8
Vnější průměr přírubového prstence [mm]	4270	4570
Vnější průměr hladké části [mm]	3840	4535
Vnitřní průměr hladké části [mm]	3542	4136
Tloušťka stěny hladké části bez návaru [mm]	140	192,5
Tloušťka návaru [mm]	9	7+2/-1
Tloušťka dna [mm]	160	237
Hmotnost tělesa [kg]	215150	321210
Materiál tělesa, značka	nízkolegovaná vysokojakostní ocel	nízkolegovaná vysokojakostní ocel
	15Ch2MFA	15CH2NMFA
		a 15CH2NMFA-A
Materiál návaru, značka	austenitický návar	austenitický návar
	Sv07Ch25N13/Sv08Ch19N10G2B	Sv07Ch25N13/Sv04Ch20N10G2B
Vnitřní objem tělesa [m³]	112	133
Projektová doba životnosti TNR	40 let	40 let

Víko	VVER 440	VVER 1000
Průměr víka [mm]	3640	4580
Výška víka [mm]	2100	2170
Tloušťka stěny víka [mm]	221	285
Hmotnost víka [kg]	48500	89145
Vnitřní objem víka [m³]		14

Корпуса производства ŠКОДА для АЭС с ВВЭР

Обзор полуфабрикатов для производства корпусов реакторов ВВЭР-440 и ВВЭР-1000, с указанием веса отливок

laková nádoba VVER 440
 vrchlík víka - I 85 volná příruba - I 135 prstenec víka - I 85 přírubový prstenec - I 135 hrdlový prstenec horní - I 135 hrdlový prstenec dolní - I 135 hladký prstenec dlouhý - I 135 hladký prstenec krátký - I 110 hladký prstenec krátký (dna) - I 110 vrchlík dna - I 85
Flaková nádoba VVER 1000
A - vrchlík víka - I 110 B - přírubový prstenec víka - I 195 C - přírubový prstenec - I 135 D - hrdlový prstenec horní - I 195 E - hrdlový prstenec dolní - I 195 F - opěrný prstenec - I 135

- G horní hladký prstenec I 170 H dolní hladký prstenec I 170 J vrchlík dna I 135

Технология сливных плавок и использованные отливки

Вакуумное литьё < 1 torr, (температура литья 1640°С)

<u>Для отливки I 135</u>

EOP 25 т 75 т (1 ковш) SM 50 т EOP 13 т 63 т (2 ковш) SM 50 т

Подготовка корпуса ВВЭР 440 к окончательной термообработке

Корпус реактора ВВЭР 440 после контроля давлением **25 МП**а

Подготовка к транспортировке первого корпуса реактора ВВЭР-440, изготовленного в ŠКОDA Пльзень на АЭС «Пакш», Венгрия, 1981 г.

На основании обширных работ по освоению технологий в ходе производства корпуса реактора ВВЭР-1000 были применены

современные технологии

- Производство отливок весом 203 т
- Перфорация с помощью полового дорна
- Кузнечная прессовка патрубков
- Целокованные обечайки (не из листов проката)
- Сварные швы с узкой кромкой
- Монтажный сварной шов патрубок-трубопровод
- Ду 850

Отливка весом 203 тон со схемой дальнейшей обработки давлением

Ковка на прессе ШКОДА частей корпуса ВВЭР 1000

Сварка в месте будущей АЗ Толщиной 192 мм ("beltline region")

MACROETCHING CIRCUMFERENTIAL NARROW GAP WELDS OF QUALIFICATION TEST COUPONS (beltline region VVER 1000 RPV)

Двухслойная наплавка частей корпуса

Аттестационная программа испытаний материалов корпуса реактора **BB**ЭP-1000

Схема полуфабрикатов и испытаний из отливки I 135

Принцип оценки уровня радиационного повреждения материала корпуса реактора

Skladba a velikost polotovarů TN VVER 1000 - čísla taveb pro TN JE Belene a 1. a 2. blok Temelín

	1. BELENE	1. TEMELÍN	2 . TEMELÍN
1	41466	52469	54118
2	42582	51695	54390
3	50781	52572	51177
4	40851	51 0 55	51015
5	41020	51218	51772
6	51319 1)	52848	52144
7	51738	52839	53788
8	51711	52670	37687 2)
9	44628	53517	00126 1)

1)použit ingot I 170

2)použit ingot I 195

Сравнение фактической концентрации отслеживаемых загрязнений в корпусе реактора АЭС «Темелин» производства ŠKODA

Согласно паспорту	ETE 1				ETE 2	Материал	
	Р	S	Cu	Р	S	Cu	
Фланцевая обечайка	0,012	0,015	0,08	0,009	0,011	0,07	15CH2NMFA
Верхняя патрубковая обечайка	<mark>0,013</mark>	<mark>0,017</mark>	<mark>0,09</mark>	<mark>0,014</mark>	<mark>0,016</mark>	0,07	
Нижняя патрубковая обечайка	0,010	0,015	0,08	0,011	0,013	<mark>0,08</mark>	
Опорное кольцо	0,0079	0,011	<mark>0,040</mark>	<mark>0,0087</mark>	<mark>0,010</mark>	0,035	15CH2NMFAA
Верхняя обечайка	0,0075	<mark>0,011</mark>	0,034	0,0069	0,009	0,048	
Нижняя обечайка	<mark>0,0089</mark>	0,010	0,030	0,0086	0,010	<mark>0,060</mark>	

Корпуса реакторов производства ŠКОDA для АЭС «Белене» -> Калининская АЭС, блок № 4

RPV part	Material	Heat No.	Т _{к0,} °С	T ₀ , °C	
Supporting ring	15Kh2HMФAA	51319	- 70	- 126	T
Lower smooth ring	15Kh2HMΦAA	51711	- 80	- 145	
Upper smooth ring	15Kh2HMΦAA	51738	- 60	- 123	
Welding joint No.3	Sv08AA, Sv12X2H2MAA, FC-16A	176284	- 50 - 70	- 80	
Welding joint No.4	Sv08AA, Sv12X2H2MAA, FC-16A	176284	- 50 - 70	- 80	
Base metal			≤ - 5 0	≤ - 123	
Weld metal 27			≤ - 50	≤ - 80	

Что определяет срок службы корпуса реактора?

- Исходное состояние
- Эксплуатационные режимы изменения давления, температуры, флюенса
- Гидравлические испытания на прочность
- Влияние флюенса радиационное охрупчивание

- программа образцов-свидетелей

- измерение флюенса за корпусом реактора (ретроспективная дозиметрия)

• Развитие дефектов – периодические контроли

Управление сроком службы корпуса реактора

вклад ŠKODA JS

База данных характеристик
 материалов ВВЭР-440 и ВВЭР-1000

Модернизация программы образцов-свидетелей

 Нейтронная дозиметрия «за корпусом реактора»

 Для наблюдения за изменениями свойств материалов корпуса реактора в ходе эксплуатации используются программы образцов-свидетелей

FACULTY OF MECHANICAL

ENGINEERING UNIVERSITY

OF WEST BOHEMIA

Применение данных программ требуется в инструкциях и рекомендациях государственных и международных органов по ядерной безопасности

Базой данных программ является то, что образцысвидетели изготавливаются из того-же материала как корпус реактора и проходят облучение в условиях, соответствующих условиям АЭС. Данные образцы периодически извлекаются и оцениваются.

Управление сроком службы корпуса реактора

FACULTY OF MECHANICAL

ENGINEERING

UNIVERSITY

Сравнение оснащения одного из контейнеров для стандартной и дополнительной программы образцов-свидетелей корпуса реактора ВВЭР-440 (два образца Charpy-V и 12 образцов "insert" для реконституции)

Техника реконституции – применение образцов типа "insert" для испытаний на ударную вязкость вязкость на излом

- Fig. 1 Scheme of a container from the Standard Surveillance Program
- Fig. 2 Scheme of a container from the Supplementary Surveillance Program

Требуемые сроки извлечения звеньев образцов-свидетелей для обеспечения продления срока эксплуатации АЭС «Дукованы»

	BLOK	ROK	PRODLOUZ	ENI ZIVOTNOSTI NA		
	1 States	SPUSTENI	40 LET	60 LET	80 LET	
	1	1985	2010-2011	2020-2021	2040-2041	
	2	1986	2011-2012	2021-2022	2041-2042	
24	3	1987	2012-2013	2022-2023	2042-2043	
	4	1987	2012-2013	2022-2023	2042-2043	

Типичный график флюенса с **E > 0,5 MeV в аксиальном** максимуме для блока № 1 АЭС «Дукованы»

Отбор образцов для ретроспективной дозиметрии Разработка и производство оборудования по заданию SÚJB

Управление сроком службы корпуса реактора

Размещение и исходный вид ячеек 1 п согласно исходному проекту V-320 A-AA-A Крышка 2M Б F •B Bемпературны Блок защитных труб cforw A-A B-B Шахта внутрикорпусная Корпус 1Л5 1Л4 Выгородка Б₁Б 1^B В Б Облучаемые Верхняя граница сборки активной зоны *1*1Л2 lenx A. 1JII Нижняя граница активной зоны

FACULTY OF MECHANICAL

ENGINEERING UNIVERSITY

OF WEST BOHEMIA

Размещение держателей и ячеек по модернизированной программе ОС ŠКОDA в области активной зоны реактора ВВЭР-1000 (блоки № 1, 2 АЭС «Темелин»)

Характеристика модернизированной программы ОС для блоков № 1, 2 АЭС «Темелин»

- deset plochých kontejnerů (25 x 180 x 330 mm) 6+2+2
- výběr reprezentativních materiálů základní materiál, svar, návar + JRQ IAEA Reference material
- 10 x %P + %Cu hlavní kritérium + (%As+%Sb+%Sn)
- zkušební tělesa Charpy-V+"insert", COD+"insert", tahovky a CT 0,5
- materiály monitorů neutronové fluence Fe,Ni,Co,Ti,Nb,Cu, U238,Np237
- teplotní tavné monitory
- celkový počet svědečných vzorků 5648 ks
- 2, 6, 10, 18, 26 + "x" radiační poškození (6 schránek)
- 14, 34 teplotní stárnutí (2 schránky)
- monitorování vlivu regeneračního žíhání (1 schránka)
- monitorování stupně opětovného zkřehnutí ("re-embrittlement") po regeneračním žíhání (1 schránka)

Управление сроком службы корпуса реактора

Ячейка	Продолжительность облучения, лет	Дата извлечения
U1 *	4	2009
U2	8	2016
U3	12	2021
U4	20	2029
U5	28**	2040**
U6	36**	2049**

•- контейнер был установлен в 2005 г., и извлечен в 2009 г. из корпуса реактора блока № 2 АЭС «Темелин»

** - дата извлечения данных контейнеров может быть изменена

Управление сроком службы корпуса реактора

PML и оценка результатов испытаний образцов-свидетелей в Институте ядерных исследований Ржеж

Управление сроком службы корпуса реактора

Эксплуатационные контроли корпуса реактора

ETE – pásy ZM kontrolované UT (kontrola ZM probíhá současně s kontrolou

Parametry TNR VVER 1000/V-320.Č	Hodnota
Tlak na výstupu z aktivní zóny při práci reaktoru v nominálním režimu	15,7 MPa
Výpočtový tlak	17,6 MPa
Teplota vody na výstupu z reaktoru při práci reaktoru v nominálním režimu	320°C
Výpočtová teplota stěny nádoby	350°C
Zkušební tlak při tlakové zkoušce na pevnost	24,5 MPa
Teplota stěn při tlakové zkoušce na pevnost	Dle bodu 3.5
Výpočtová životnost tělesa tlakové nádoby	40 let (60 let ?)
Maximální výpočtová fluence rychlých neutronů s energií E = 0,5 MeV za dobu životnosti 40 let	5,7.10 ¹⁹ neutr./cm ²

Minimální přípustná teplota stěny TNR při zatížení tlakem vyšším než 3,5 MPa – teplota T_s – se určuje v závislosti na době provozu reaktoru podle tabulky s přihlédnutím k výsledkům zkoušek svědečných vzorků (uzel 1.2.9).

	Doba provozu rok										
Čas	Před zahájením provozu	do 1	do 4	do 8	do 12	do 16	do 20	do 24	do 28	do 30	do 40
Teplota T₁ °C	50	50	86	97	103	108	112	115	118	119	125

Teplota stěny T_s tělesa tlakové nádoby při zatěžování tlakem vyšším než 3,5 MPa se určí : $T_s = max$. T_1 , T_2 ; teplota $T_2 = T_{KO} + 50$, kde T_{KO} je přechodová teplota určená zkouškami ozářených svědečných vzorků.

FACULTY OF MECHANICAL

ENGINEERING UNIVERSITY OF WEST BOHEMIA

Управление сроком службы корпуса реактора

Сравнение подходов различных нормативных документов к уровню величины давления гидроиспытаний на прочность

předpis	limitní zkušební tlak	zkušební tlak pro VVER 1000 [MPa]	teplota
ASME XI	1,1 p _{prac.}	17,3	f (RT _{NDT} , K _{IR} ,F)
RCC-M	1,3 p _{výpoč} návrh 1,1 p _{výpoč}	22,9 <mark>19,4</mark>	
KTA 3201	1,25 p _{výpoč} návrh 1,1 p _{výpoč}	22,0 19,4	
PNAE	1,25 p _{νýpoč} σ ^{τh} / σ ^τ	23,9	f (Tko, Klc.F)
Pravila ustrojstva	1,25 p $_{\rm prac}~\sigma^{\rm Th}/\sigma^{\rm T}$	21,3	
NTD A.S.I. III Případ č. 1/2004	1,25 p _{prac.} σ Th / σ 1,15 p _{prac.} σ Th / σ	T 21,3 T 19,6	f (Tko, Klc.F)

Расчет пониженного давления гидроиспытания на прочность

 $p = 1,15. p_{p} \sigma^{Th} / \sigma^{T}$

где

р - испытательное давление при периодическом гидроиспытании на прочность, МПА

р_р - рабочее давление, МПа

σTh - номинальное допустимое напряжение при гидроиспытании на прочность, МПа

σ^т - номинальное допустимое напряжение при расчетном давлении, МПа

р = 1,15.15,7.225/207 = 19,6 МПа

Испытательное давление для периодических гидроиспытаний на прочность согласно Примеру №

1/2004 NTD A.S.I. III равно 19,6 Мпа Испытательное давление для периодических гидроиспытаний на герметичность согласно Примеру № 1/2004 NTD A.S.I. III равно расчетному давлению 17,6 МПа.

Влияние изменения давления гидроиспытания на прочность на срок службы корпуса реактора

Závěry

Hodnoty čerpání dílčího únavového poškození během PTZ pro původní a nově stanovený tlak byly vypočteny pro nátrubek D 850. Tato lokalita byla vybrána z toho důvodu, že vykazovala ze všech sledovaných výpočtových uzlů během tlakových zkoušek nejvyšší hodnoty dílčího únavového poškození

Podstatný vliv na čerpání únavového poškození v ZM i v návaru má změna tlaku. <u>Snížení tlaku PTZ o 4,9 MPa se projevuje snížením dílčího únavového</u> <u>poškození v ZM o $\approx 50\%$ </u>, v návaru o $\approx 30\%$. Zwíšení tenloty PTZ z hodnoty 100°C na 130°C představuje relativně malý pokles

Zvýšení teploty PTZ z hodnoty 100°C na 130°C představuje relativně malý pokles čerpání dílčího únavového poškození pro ZM dA \approx 3%,

pro návar toto zvýšení teploty znamená značný pokles čerpání dílčího únavového poškození dA \approx 46%.

Регенеративный отжиг корпуса реактора

Технология регенеративного отшига - ŠKODA JS Plzeň

- Prakticky všechny "staré" TNR VVER 440/V-230 byly vyžíhány pomocí specielního zařízení s elektrickým odporovým ohřevem
- Ruská firma MOCHT- otžig vyžíhala 12 TNR
- ŠKODA JS a.s. ve spolupráci s EBO a VÚJE úspěšně vyžíhala 3 TNR (JE Bohunice 1 a 2 a JE Loviisa – 1993 a 1996)
- Poslední žíhání bylo provedeno v roce 2010 na ROJE 1.blok (realizace – OKB Gidropress)

Гайковерт шпилек главного фланцевого соединения реактора

- Совместный проект Siempelkamp Tensioning Systems и ŠKODA JS
- Затяжка всех шпилек одновременно
- Референции:

FACULTY OF MECHANICAL

ENGINEERING UNIVERSITY

OF WEST BOHEMIA

- АЭС «Дукованы», поставлено в 2008 г.
- АЭС «Богунице» / «Моховце» поставлено в 2008 г.
- АЭС «Темелин» поставлено в 2009 г.
- АЭС «Моховце», блоки № 3, 4 поставлено в 2013 г.

Выводы

- 1. Технология производства корпусов реакторов для АЭС типа ВВЭР, применяемая на ŠKODA JS, обеспечивает отличные показатели как с точки зрения чистоты, так и механических свойств стали.
- 2. Модернизированные программы образцов-свидетелей разработанные на ŠKODA JS обеспечивают обективные информации об действительном процессе старения корпусов реакторов.
- 3. Система периодических контролей корпусов реакторов проводимая ŠKODA JS позволяет постоянно оценивать действительное состояние материала корпусов в течении их эксплуатации.
- 4. Измерение флюенса нейтронов на поверхности корпуса и применение ретроспективной дозиметрии вносит вклад в объективную оценку состояния корпусов реакторов.
- 5. Программа снижения величины давления гидроиспытаний и изменение периода их выполнений на всех корпусах производства ŠKODA JS (кроме 4.бл. Калининской АЭС) значительно способствует к продлению срока службы указанных корпусов.
- 6. Анализ состояния главного разъема и применение новых гайковертов имеет свою доль в хорошем состоянии главного разъема корпусов реакторов.
- 7. Технология регенеративного отжига даст предпосылки для эксплуатации корпусов свыше проектного срока службы.

Кто построит нове блоки АЭС в ЧР?

И будет ичаствовать чешская промышленность?

FACULTY OF MECHANICAL ENGINEERING UNIVERSITY

OF WEST BOHEMIA

Кто построит нове блоки АЭС в ЧР?

И будет ичаствовать чешская промышленность?

Atmea – společný podnik francouzské Arevy a japonské Mitsubishi Heavy Industries

Atmea1 (PWR, 1150 MW)

Čínská CGN

Francouzská EdF (přebírá výstavbu nových bloků od Arevy)

Korejská KHNP

Ruský Rosatom

Americko-japonský Westinghouse

HPR-1000 (PWR, 1060 MW) 1400MW blok

EPR (PWR, 1650 MW)

APR-1000+ (PWR, 1050 MW) APR-1400 (PWR, 1400 MW)

VVER-1200 (PWR, 1200 MW)

AP1000 (PWR, 1250 MW)

Примеры успешного сотрудничества

Западно-Чешский университет • программа подготовки магистров

Сооружение ядерных энергетических установок

Energetika a zejména jaderná energetika je jedním z dynamicky se rozvíjejících oborů, kde se využívá stále více nových technologií, materiálů a konstrukcí. To se v současnosti a v budoucnosti neobejde bez účasti mladých odborníků, jejichž přípravě je nezbytné věnovat

soustavnou pozornost. Na přípravu kvalitních stro

Na přípravu kvalitních strojních inženýrů je zaměřenznovu otevřený studijní obor

"Stavba jaderně energetických zařízení"

na Západočeské univerzitě.

ZÁPADOČESKÁ UNIVERZITA V PLZNI

Западно-Чешский университет - программа подготовки магистров

складе свежего топлива АЭС «Дукованы»

Ha

Экскурсия студентов ZČU/FST/ККЕ

- Trainee program
- для студентов, обучающихся по программе подготовки магистров, специализация Сооружение атомных энергетических установок, Машиностроительный факультет, Западно-Чешский университет в г. Пльзень
- Вознаграждение за выполненную работу
- по договорному тарифу (почасовая ставка)
- Стипендия
- 5 000 чешских крон в месяц при условии средних оценок от 1,0 до 1,5 за предыдущий семестр или
- 3 500 чешских крон в месяц при условии средних оценок от 1,51 до 1,9 за предыдущий семестр или
- На условиях, определенных индивидуальным договором о выполнении работы

Западно-Чешский университет • программа подготовки магистров

Ссылочная документация

- [01] TĚLESO TLAKOVÉ NÁDOBY, TECHNICKÝ POPIS A NÁVOD NA OBSLUHU, Ae 6358/Dok, Dokumentace ŠKODA, Plzeň, 2004
- [02] Dokumentace ŠKODA, Těleso tlakové nádoby průvodní výkresy Ae 16643 T
 - Těleso tlakové nádoby Volba základních rozměrů, Ae 4236/Dok, Plzeň, 1980
- [03] Tomáš I., MAGNETIC ADAPTIVE TESTING AS INDICATOR OF IRRADIATION DAMAGE OF FERROMAGNETIC STEEL, FI ČAV, Praha, Universal Network for Magnetic, Cardif 2007
- [04] Беркович В.Я., Семченков Ю.М.: Перспективные проекты реакторов ВВЭР, МНТК-2012, Москва 2012
- [05] Firemní materiály ČEZ: Jaderná elektrárna Dukovany, Výukové materiály Školícího a výcvikového střediska
- [06] Brumovský M.: SURVEILLANCE SPECIMEN PROGRAMMES FOR WWER RPVs, IAEA Regional Workshop on Improved RPV Structural Integrity Assessment for NPP 18-21 October, 2005, Tecnatom S.A. Madrid, Spain
- [07] Analýza a návrh na změnu intervalu kontrol TNR zvenku na JE Dukovany, Ae 12009/Dok, Dokumentace ŠKODA, Plzeň, 2006
- [08] Prantl A.: Hlavní přírubový spoj VVER 440 EDU, Ae 12758/Dok, Dokumentace ŠKODA, Plzeň, 2008
- [09] Brumovský M.: RPV Design : Materials and Sressors, JRC EU Konference, Znojmo 10/2010, ČR
- [10] Brynda J.: Tlakové nádoby jaderných reaktorů, ÚJV Řež,
- [11] IAEA-TECDOC-1120, PWR pressure vessels, IAEA 10/1999
- [12] J. Zdebor, J. Brynda, R. Konop : Provozní stav tlakových nádob JE vyrobených ve ŠKODA JS Plzeň, 9. konference Zvyšování životnosti komponent energetických zařízení v elektrárnách, 21. – 23. 10. 2014, Srní

Благодарю за внимание!

JADERNÉ DNY 2017 20. 4. - 25. 5. 2017 NA ZČU V PLZNI

ZAJÍMÁ VÁS JADERNÁ ENERGIE? Znáte energetické problémy současnosti? Chcete vědět, jak funguje jaderný reaktor? Je jaderná energie bezpečná? Ekologická? Užitečná? Zjistěte to sami! Navštivte originální výstavu v prostorách ZČU v Plzni.

MEZI EXPONÁTY UVIDÍTE: Mlžnou komoru Maketu palivové kazety reaktoru VVER 1000 Modely reaktorů Měřič radioaktivity Modely kontejnerů na použité palivo Model hlubinného úložiště a mnoho dalšího

CENEN