

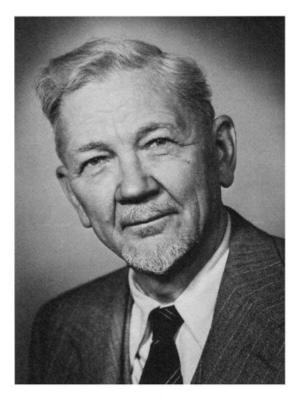
DEPARTMENTOF POWER SYSTEM ENGINEERING

Brakes, Thermal and Thermoelastic Analysis

Josef Voldřich Ukraine, November 2018 Проект "Развитие международного сотрудничества с украинскими ВУЗами в областях качества, энергетики и транспорта" г. Харьков, 11/2018

Степан Прокопович Тимошенко

1878 - 1972



5. Timospunco

- A grand native of Ukraine, the father of modern engineering mechanics.
- His portrait, as the only one, has displayed with reverence in my workroom for 20 years.
- He was a giant for mathematical modelling of strength problems in mechanical engineering.

Encouragement:

- Let's not be afraid to use MATHEMATICS for solution of our actual problems.
- And it is not inevitable to look up only to commercial FEM software.

Content

Motivation and introduction

Some problems with friction brakes

Brake thermal analysis

Modeling of friction element contacts

Contact surface temperature – analytical approach

Finite elements models

Uncoupled thermal stress and distortion analysis

Coupled thermal and distortion analysis

The last three parts of the lecture is above all from

J. Voldřich: Brakes, thermal and thermoelastic analysis. In: Hetnarski R. (Ed.), *Encyclopedia of Thermal Stresses*, Vol 1, pp 486-497, Springer Dordrecht, Heidelberg, New York, London 2014

Motivation

- The springtime 2002 the chief of undercarriage development department of Škoda Auto, Ing. J. Nepomucký CSc., came to with a problem concerning "hot judder" (hot vibration) in disk brakes.
- Nobody of the whole concern Volkswagen AG knew a real cause of the phenomenon and any way how to eliminate it. It was a reason to deal with breaks.

(Volkswagen Group = $\sum Volkswagen$, Škoda Auto, Audi, Porsche, SEAT, ...)

• Problems with hot judder and brake fading appeared even in the German car factory Volkswagen AG.

A mechanical friction brake is a technical device that serves to slow or stop a moving body, or for keeping it at rest.

The main components of the friction brakes are friction elements.

In braking, a rotating body or system of bodies are in contact with fixed friction elements.

Disk brake Drum brake **PADS** Intermittent SHOES WITH contact LININGS DISK The brakes are classified **DRUM** with respect to the arrangement of the Multidisc brake Railway tread brake brake elements. ROTATING **SHOES** DISKS **Full contact** STATIONARY WHEEL **DISKS WITH** LININGS

Examples of disk brakes

http://en.wikipedia.org/wiki/Disc brake

Mercedes Benz AMG carbon ceramic brake

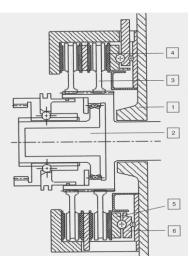
Aircraft brakes

The energy dissipated by the disk brake when stopping a passenger car weighting 1,500 kg from a speed of 100 km/h makes 0.15 MJ.

Each 10-disk brake of a Boeing 777 passenger aircraft must be capable of absorbing up to 144 MJ.

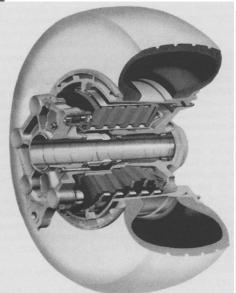
out of the book by Breuer, Bill 2008

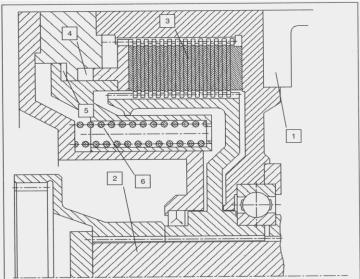
Multidisk brakes



Why passenger aircrafts are not able to take off immediately after their landing?

Hot brakes are one of the main reason.

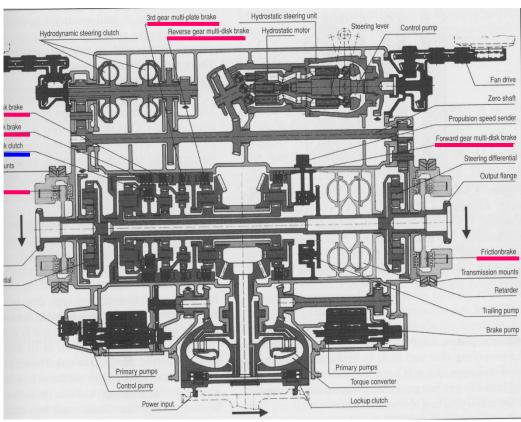




Leopard 2 during all-out braking operation.

Schematic view of the 1100kW transmission HSWL 354 for heavy tracked vehicles weighing more than 60 tons.

Red lines label brakes.



Some problems with brakes

Thermal stability

Fading – generally a drop of braking power and braking eefect at high temperatures

Formation of bubbles due to evaporation – the brake fluid reaching boiling temperature at the hottest point in the brake caliper

Brake disk deflection – inadequate thermal stability may result from a geometric error

Brake noise

- very difficult to forecast by way of calculation methods

Wear

Corrosion, material degradation

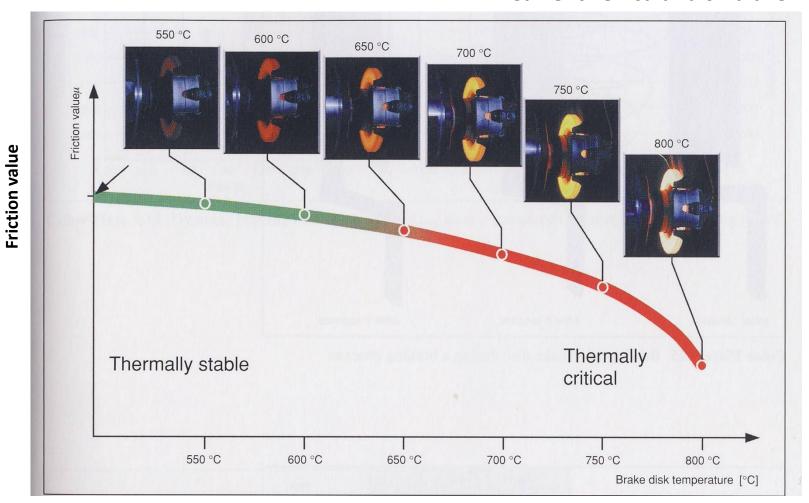
Cracks

Brake judder

- hot judder is induced by thermoelastic instability (our next lecture)

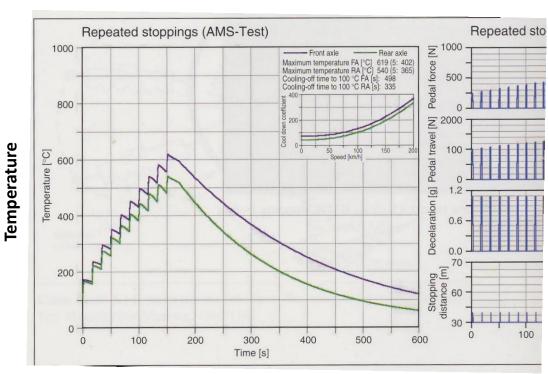
Brake fading

Current vehicular disk brake



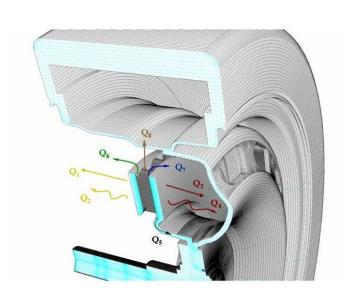
Brake disk temperature

Repeated stoppings test

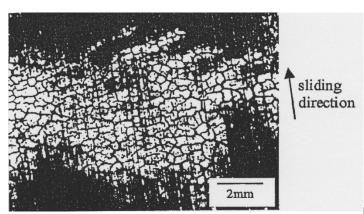


Time

Brake system cooling

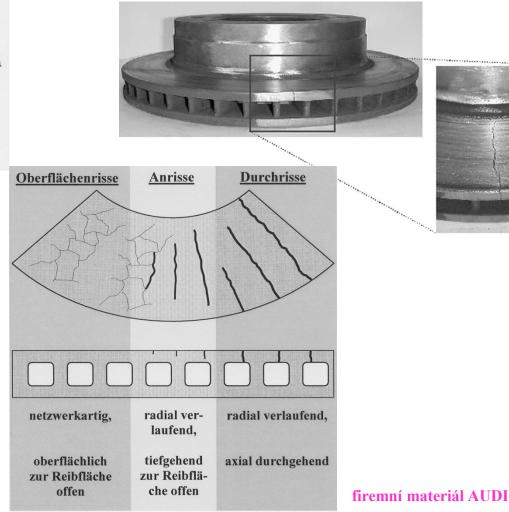


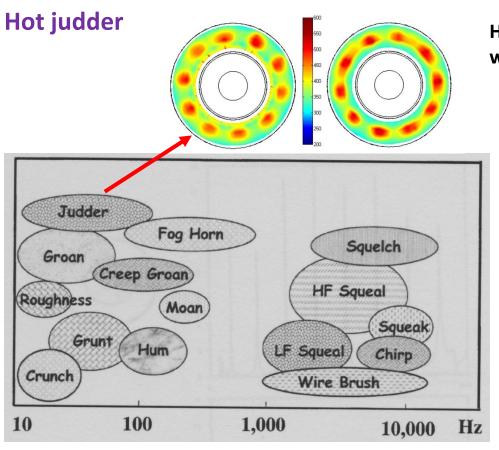
Cracks



Dufrénoy, Weichert, *J Thermal Stresses* 26(2003), 815-828

Nguyen-Tajan 2002 -disertace





Hot spots appear on both sides of disk when hot judder occurs.

measured at our University of West Bohemia

A. Akay: Acoustics of friction,

J. Acoust. Soc. Am. 111 (2002), 1525-48

Prof. Barber 1969 described the frictionally excited thermoelastic instability as the cause of the phenomenon that is of critical importance in the design of brakes and clutches.

Modeling of friction element contacts

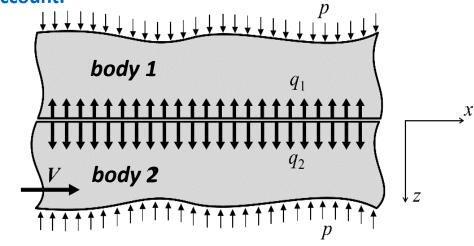
From a microscopic point of view, contact with friction between two bodies 1 and 2 is a very complex effect, which is affected by the surface roughness, composition of the materials used, their wear, ...

We take only macroscopic physical entities into account.

$$T_1(x, y, 0, t) = T_2(x, y, 0, t)$$

 $q = f \rho V$
 $q = q_1 + q_2$

$$q_1 = K_1 \frac{\partial T_1}{\partial z}$$
 $q_2 = -K_2 \frac{\partial T_2}{\partial z}$



 T_i – temperature of body i

f – friction coefficient

V – sliding velocity

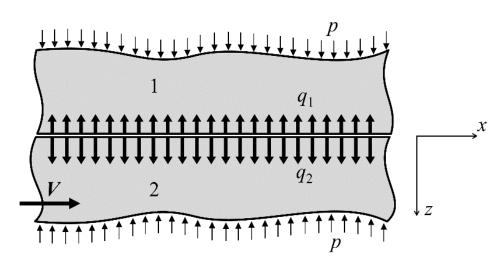
p – normal contact pressure

q – the heat produced by bodies friction per time unit applied to a unit area

 q_i – the heat flux removed from the contact surface to the body i

K_i – the thermal conductivity coefficient of body i

Modeling of friction element contacts



K_i – the thermal conductivity coefficient of body i

 $k_i = K_i/c\rho$ – the thermal diffusivity

 A_i – the size of the corresponding contact area of body i

Full contact

$$q_1 = q \left(1 + \frac{K_2}{K_1} \sqrt{\frac{k_1}{k_2}} \right)^{-1}$$

$$\Rightarrow^{x} q_{2} = q \left(1 + \frac{K_{1}}{K_{2}} \sqrt{\frac{k_{2}}{k_{1}}} \right)^{-1},$$

Intermittent contact

$$q_1 = q \left(1 + \frac{A_2}{A_1} \frac{K_2}{K_1} \sqrt{\frac{k_1}{k_2}} \right)^{-1}$$

$$q_2 = q \left(1 + \frac{A_1}{A_2} \frac{K_1}{K_2} \sqrt{\frac{k_2}{k_1}} \right)^{-1}$$

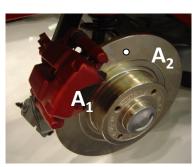
Example

A contemporary automobile disk brake

- disk from cast iron
- the friction material A of pads
- at least $A_2/A_1 = 7$

... approximately 98% of the produced heat goes into the disk!!

Intermittent contact



$$q_1 = q \left(1 + \frac{A_2}{A_1} \frac{K_2}{K_1} \sqrt{\frac{k_1}{k_2}} \right)^{-1}$$

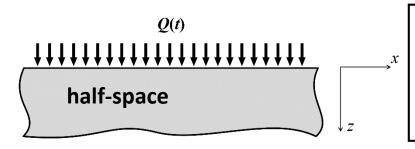
$$q_2 = q \left(1 + \frac{A_1}{A_2} \frac{K_1}{K_2} \sqrt{\frac{k_2}{k_1}} \right)^{-1}$$

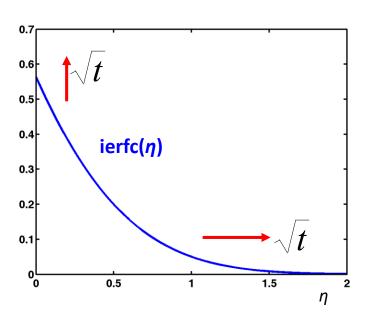
Brakes, Thermal and Thermoelastic Analysis, Table 1 Orientation values of parameters of some materials in use. k – thermal conductivity, κ – thermal diffusivity, E – elastic modulus, α – coefficient of thermal expansion, ρ – density

	k W/ (mK)	$\kappa.10^6$ m ² /s	E GPa	α.10 ⁶ 1/K	$\frac{\rho \text{ kg/}}{\text{m}^3}$
Cast iron	54	12.98	125	12	7,100
Friction material A	5	3.57	1	10	4,000
Friction material B	1.2	0.52	8	15	3,000
Composite C/SiC	40	22.2	30	0.5	2,300

Contact surface temperature

Analytical solution for the heated half-space - 1D problem





We receive, using Laplace transform

for
$$Q(t) \equiv Q = 1$$

$$\Theta_{I}(z,t) = \Theta_{0} + \frac{2\sqrt{k t}}{K} \operatorname{ierfc}\left(\frac{z}{2\sqrt{k t}}\right), \quad z \ge 0, \quad t > 0,$$

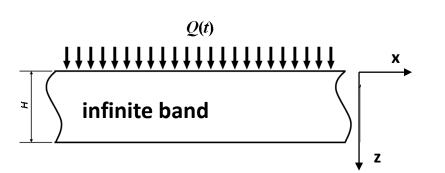
where

ierfc(
$$\eta$$
) = $\frac{1}{\sqrt{\pi}}$ exp($-\eta^2$) - η (1 - erf(η)),

$$\operatorname{erf}(\eta) = \frac{2}{\sqrt{\pi}} \int_0^{\eta} \exp(-\zeta^2) \, d\zeta$$
 the error function

Surface temperature

$$Q \frac{2\sqrt{k t}}{K\sqrt{\pi}} = Q \frac{2\sqrt{t}}{\sqrt{K\rho c\pi}}$$



Solution by variable separation method

very complicated, unsuitable formula

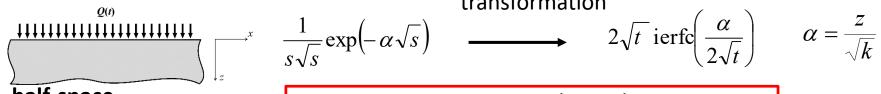
$$T(z,t) = \frac{Q(t)}{K} \left(\frac{z}{2H} - \frac{H}{6} \right) + \frac{k}{KH} \int_{0}^{t} Q(\tau) d\tau + Q(0) \frac{2H}{K\pi^{2}} \sum_{n=1}^{\infty} \left\{ \frac{(-1)^{n+1}}{n^{2}} \exp(-k\lambda_{n}^{2}t) \cos(\lambda_{n}) \right\} + \frac{1}{K} \left(\frac{z}{2H} - \frac{H}{6} \right) + \frac{1}{K} \left(\frac{z}{2H} - \frac{H}{6$$

$$+\frac{2H}{K\pi^2}\sum_{n=1}^{\infty}\left\{\frac{(-1)^{n+1}}{n^2}\cos(\lambda_n z)\int_0^t\exp(-k\lambda_n^2(t-\tau))\frac{dQ(\tau)}{d\tau}d\tau\right\}$$

where
$$\lambda_n = \frac{\pi n}{H}$$
 and $\Theta_0 = 0$ (Carslaw, Jaeger 1959 - solution only for Q(t) $\equiv Q_0$)

Solution by the Laplace transform

backward transformation



$$\frac{1}{s\sqrt{s}}\exp(-\alpha\sqrt{s})$$

$$2\sqrt{t}$$
 ierfc $\left(\frac{\alpha}{2\sqrt{t}}\right)$

$$\alpha = \frac{z}{\sqrt{k}}$$

half-space

for
$$Q(t) \equiv Q = 1$$

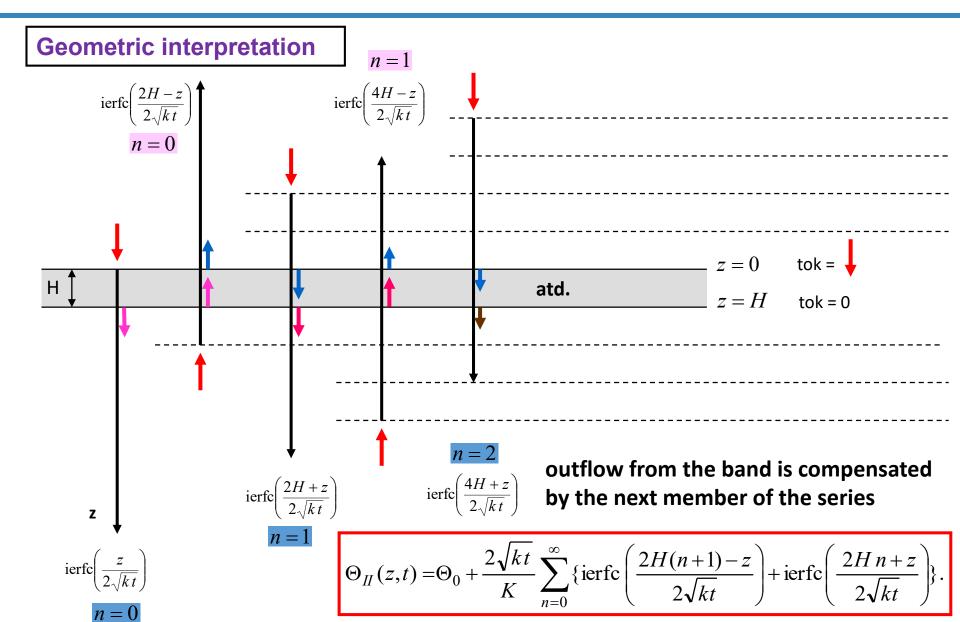
for
$$Q(t) \equiv Q = 1$$
 $\Theta_I(z,t) = \Theta_0 + \frac{2\sqrt{kt}}{K} ierfc \left(\frac{z}{2\sqrt{kt}}\right), z \ge 0, t > 0,$

$$\frac{1}{S\sqrt{S}} \frac{e^{\alpha\sqrt{S}} + e^{(\beta-\alpha)\sqrt{S}}}{e^{\beta\sqrt{S}} - e^{-\beta\sqrt{S}}} \qquad \qquad ?? \qquad \alpha = \frac{z}{\sqrt{k}}, \ \beta = \frac{2H}{\sqrt{k}}$$

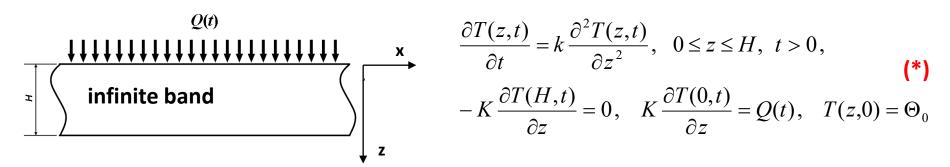
$$\alpha = \frac{z}{\sqrt{k}}, \ \beta = \frac{2H}{\sqrt{k}}$$

$$\frac{1}{S\sqrt{S}} \frac{e^{\alpha\sqrt{S}} + e^{(\beta-\alpha)\sqrt{S}}}{e^{\beta\sqrt{S}} - e^{-\beta\sqrt{S}}} = \frac{1}{S\sqrt{S}} \left(e^{(-\beta+\alpha)\sqrt{S}} + e^{-\alpha\sqrt{S}} \right) \left(1 + e^{-2\beta\sqrt{S}} + e^{-4\beta\sqrt{S}} + \dots \right)$$

for
$$Q(t) \equiv Q = 1$$
 $\Theta_{II}(z,t) = \Theta_0 + \frac{2\sqrt{kt}}{K} \sum_{n=0}^{\infty} \{ \operatorname{ierfc}\left(\frac{2H(n+1)-z}{2\sqrt{kt}}\right) + \operatorname{ierfc}\left(\frac{2Hn+z}{2\sqrt{kt}}\right) \}.$



Time dependent heat flux



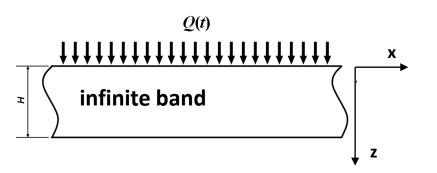
$$\Theta_{II}(z,t) = \Theta_0 + \frac{2\sqrt{kt}}{K} \sum_{n=0}^{\infty} \left\{ \operatorname{ierfc}\left(\frac{2H(n+1)-z}{2\sqrt{kt}}\right) + \operatorname{ierfc}\left(\frac{2Hn+z}{2\sqrt{kt}}\right) \right\}.$$

The general solution of the problem (*) using Duhamel's theorem

$$T(z,t) = \int_{0}^{t} \Theta_{II}(z,t-\tau) \frac{dQ(\tau)}{d\tau} d\tau + \sum_{j,\tau_{j} \leq t_{B}} \Theta_{II}(z,t-\tau_{j}) \Delta Q(\tau_{j})$$

if the function Q is smooth in the intervals (τ_j, τ_{j+1}) and has a jump point $\Delta Q(\tau_j) = Q^+(\tau_j) - Q^-(\tau_j)$ to the magnitude at the time points τ_i .

Full contact and emergency braking



 $V(t) = V_0 \cdot (1-t/t_B)$ – the sliding velocity t_B - the braking time $Q(t) = Q_0 \cdot (1-t/t_B)$ – both the contact pressure p and friction coefficient f are considered constant

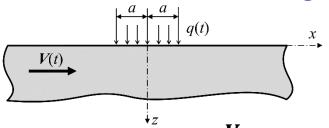
approximation
$$\Theta_{II}(0,t) \approx \Theta_0 + \frac{2\sqrt{k}}{K\sqrt{\pi}} \sqrt{t}$$

$$T(z,t) = \int_{0}^{t} \Theta_{II}(z,t-\tau) \frac{dQ(\tau)}{d\tau} d\tau + \sum_{j,\tau_{j} \leq t_{B}} \Theta_{II}(z,t-\tau_{j}) \Delta Q(\tau_{j})$$

The first approximation of the surface temperature for emergency braking is **the Fazekas known formula** (1953)

$$T(0,t) \approx \Theta_0 + \frac{2q_0\sqrt{k}}{K\sqrt{\pi}} \sqrt{t\left(1 - \frac{2t}{3t_B}\right)}$$
 $0 \le t \le t_B$

Intermittent contact and emergency braking

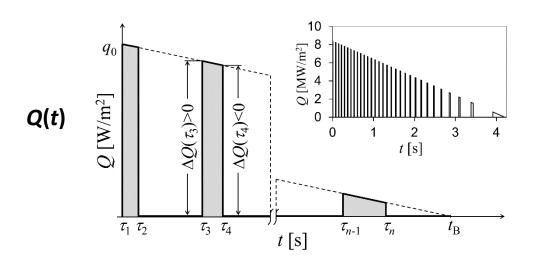


 $V(t) = V_0 \cdot (1-t/t_B)$ – the sliding velocity t_B - the braking time both the contact pressure p and friction coefficient f are considered constant

The Péclet number $\mathbf{Pe} = \frac{\mathbf{v} \, \mathbf{u}}{2\mathbf{k}}$, where 2a is the full length of the contact (of the pad).

The one-dimensional approximation is useful for Pe > 10.

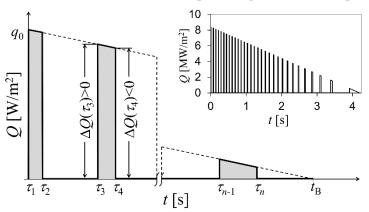
For intermittent contact, the flux Q(t) is positive only if we consider passing a given contact point under the friction pad having 2a in width size.

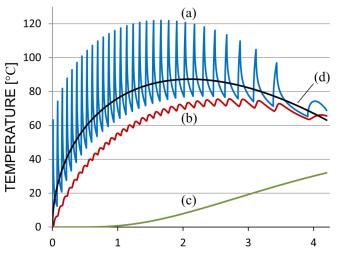


The rise ΔT in temperature when the surface point is passing under the friction pad

$$\Delta T \approx q \frac{2\sqrt{k}}{K\sqrt{\pi}} \sqrt{\Delta t} = \frac{2qa}{K\sqrt{\pi}\sqrt{\text{Pe}}}$$

Example – emergency braking





- (a) point at contact surface
- (b) point 1.5 mm under surface
- (c) point in the half thickness position of the disk
- (d) mean surface temperature

a given point at disk surface

 $V_0 = 11,2 \text{ m/s}$ initial sliding velocity (which corresponds to the automobile velocity of 100 km/h)

 $t_{\rm B}$ = 4,2 s braking time

 $q_0 = 8.4 \text{ W/mm}^2$ initial heat flux

2a = 112 mm length of trajectory of a given point

under the friction pad

L = 780 mm trajectory of the point in full revolution

H = 26,4 mm half thickness of the disk

 $Pe_0 = 24160$ Péclet number for t=0

$$\Delta T \approx q \, \frac{2\sqrt{k}}{K\sqrt{\pi}} \, \sqrt{\Delta t} = \frac{2qa}{K\sqrt{\pi}\sqrt{\text{Pe}}}$$
 63,2°C

WARNING

about FEM calculations

Applied Thermal Engineering 31 (2011) 1003-1012

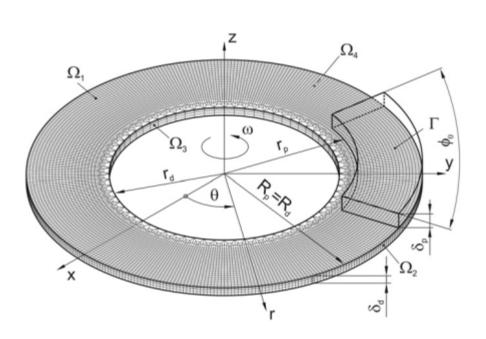
Contents lists available at ScienceDirect

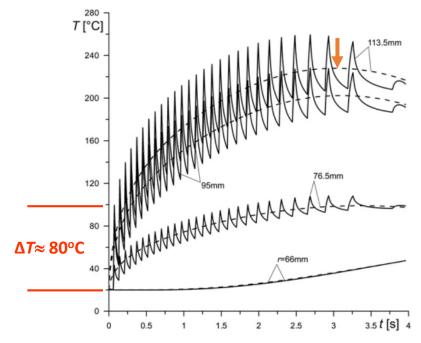
Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/apthermeng

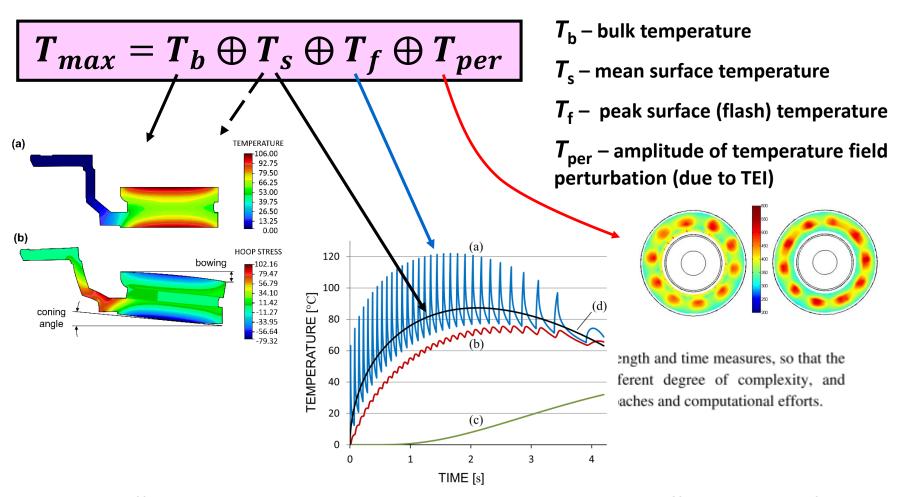
Analysis of disc brake temperature distribution during single braking under non-axisymmetric load poslední impact faktor 1.823

Faculty of Mechanical Engineering, Bialystok University of Technology (BUT), 45C Wiejska Street, Bialystok 15-351, Poland





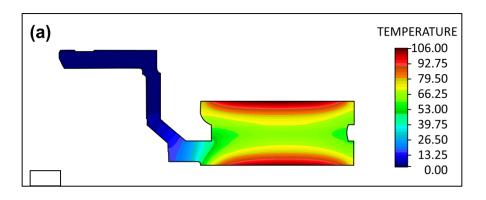
Maximal contact surface temperature



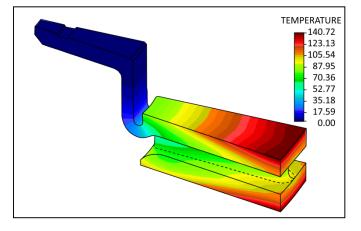
Typical are different length and time measures, so that analyses show a different degree of complexity and require different approaches and computational efforts!!

Standard FEM models are excellent for $T_{\rm b}$ and $T_{\rm s}$

$$T_{max} = T_b \oplus T_s \oplus T_f \oplus T_{per}$$



2D axisymmetric model



3D model with periodicity

Uncoupled thermal stress

Thermal stress - analytical approach (for flash temperature)

1D model and the stress acting on the thin surface layer

A particular solution to the thermoelastic equation in the form of a strain potential

$$2G\mathbf{u} = \nabla\Phi$$

where

$$\nabla^2 \Phi = \frac{2G(1+\nu)\alpha}{1-\nu}T$$

 $\mathbf{u} = (u_x, u_y, u_z)$ displacement vector

temperature field previously calculated

coefficient of thermal expansion

$$G = \frac{E}{2(1+\nu)}$$
 shear modulus

T and Φ are functions of only one space variation z

$$\sigma_{xx} = \sigma_{yy} = \frac{\partial^2 \Phi}{\partial z^2}$$

$$\sigma_{xy} = \sigma_{yz} = \sigma_{zx} = 0 \qquad \sigma_{zz} = 0$$

Brief heating of an intensity intenzity q over a time Δt brings a compressive stress of the surface z=0

$$\overline{\sigma}_{xx} = \overline{\sigma}_{yy} \approx -\frac{2E\alpha\sqrt{k}}{(1-\nu)K\sqrt{\pi}}q\sqrt{\Delta t}$$

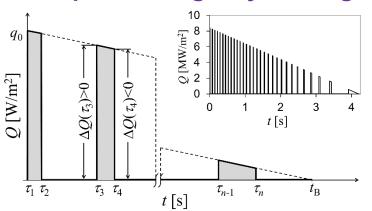
The difference of normal displacements of the surface under the pad (with a length 2a)

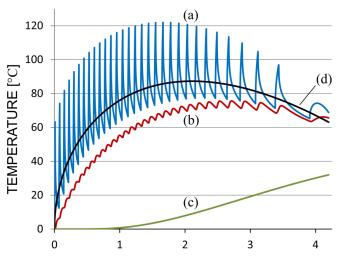
$$\Delta \overline{u}_z \approx -2c \, q \, a^2 \, / \, Pe$$
 where $c = (1+\nu)\alpha \, / \, K$

where
$$c = (1 + v)\alpha/K$$

Uncoupled thermal stress

Example – emergency braking





- (a) point at contact surface
- (b) point 1.5 mm under surface
- (c) point in the half thickness position of the disk
- (d) mean surface temperature

 $V_0 = 11,2$ m/s initial sliding velocity (which corresponds to the automobile velocity of 100 km/h)

 $t_{\rm B}$ = 4,2 s braking time

 $q_0 = 8.4 \text{ W/mm}^2$ initial heat flux

2a = 112 mm length of trajectory of a given point

under the friction pad

L = 780 mm trajectory of the point in full revolution

H = 26,4 mm half thickness of the disk

 $Pe_0 = 24160$ Péclet number for t=0

$$\Delta T \approx q \frac{2\sqrt{k}}{K\sqrt{\pi}} \sqrt{\Delta t} = \frac{2qa}{K\sqrt{\pi}\sqrt{\text{Pe}}}$$

$$\overline{\sigma}_{xx}=\overline{\sigma}_{yy}pprox-rac{2Elpha\sqrt{k}}{(1-
u)K\sqrt{\pi}}q\sqrt{\Delta t}$$
 -126,4 MPa

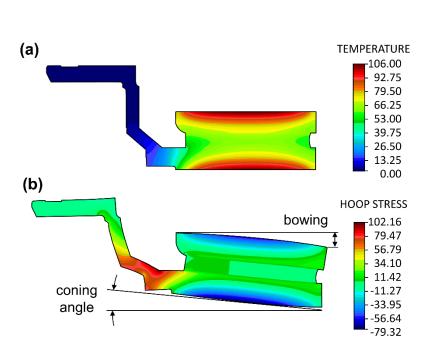
$$\Delta \overline{u}_z \approx -2c \, q \, a^2 / Pe$$

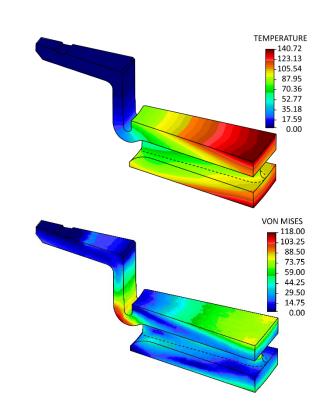
0.6 μm in the first revolution

63,2°C

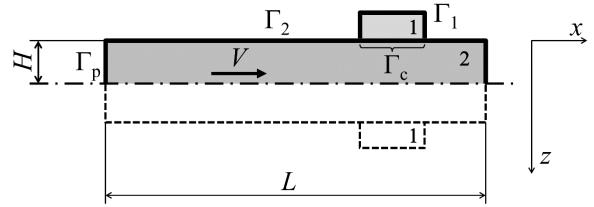
Uncoupled thermal stress

Standard FEM models





Coupled thermal analysis



$$c_{i}\rho_{i}\frac{\partial T_{i}}{\partial t}+V_{i}\frac{\partial T_{i}}{\partial x}=\frac{\partial}{\partial x}(K_{i}\frac{\partial T_{i}}{\partial x})+\frac{\partial}{\partial z}(K_{i}\frac{\partial T_{i}}{\partial z}), i=1,2,$$

where $V_2 = V(t), V_1 = 0$

+ boundary conditions and temperature contact with the friction heating

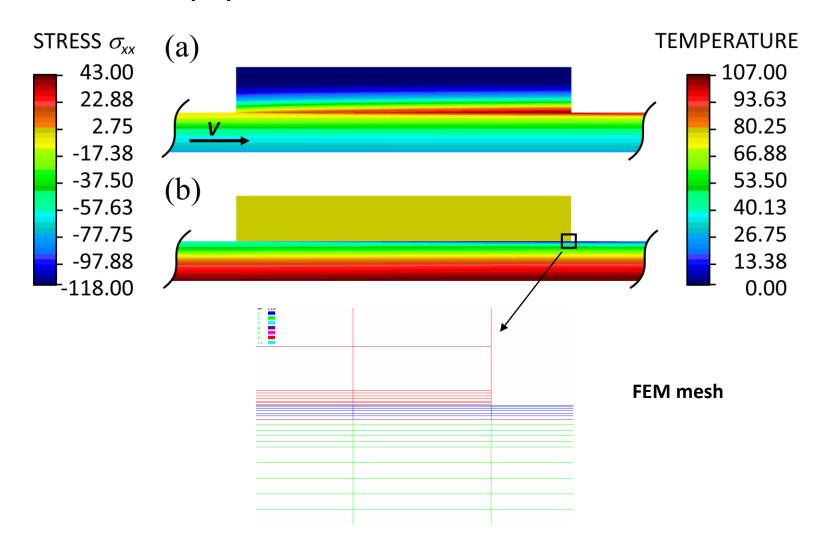
The Galerkin FE discretization method is unstable, owing to the Pe > 2.

This difficulty can be removed using Petrov-Galerkin method.

An implementation of P-G method is, for example, in software ABAQUS.

Example

Results obtained by my in-house software



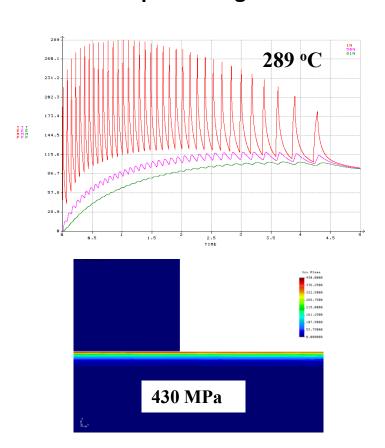
Example – A brake fading problem

Standard disk 154.5 °C The flash temperature The surface

54 MPa

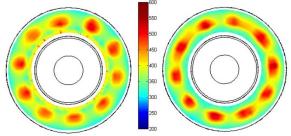
compressive stress

Disk with an inconvenient surface processing



Hot judder and hot spots

$$T_{\text{max}} = T_{\text{b}} + T_{\text{s}} + T_{\text{f}} + T_{\text{per}}$$
perturbace



Prof. J.R. Barber described the frictionally excited thermoelastic instability as cause of "hot judder" a "hot spots" at a high sliding velocity:

J.R. Barber: Thermoelastic instabilities in the sliding of conforming solids, *Proc. Roy. Soc.* A 312 (1969), 381-394.

the mutual coupling

thermal deformation – contact pressure – frictional heat generation – thermal deformation

DEPARTMENTOF POWER SYSTEM ENGINEERING

Thank You very much