Автодата», 2002. - 136 с. 2. Грехов Л.В. Топливная аппаратура дизелей с электронным управлением. Учебно-практическое пособие. — М.: «Легион-Автодата», 2003. — 176 с. 3. По страницам отечественных и зарубежных изданий // Двигателестроение. — 2003.- №3. — С.43-45. 4. По страницам отечественных и зарубежных изданий // Двигателестроение. — 2004.- №2. — C.39-42. 5. Быков В.И., Долганов К.Е., Лисовал А.А. Дизели СМД для автобусов //Двигатели внутреннего сгорания. — 2004. - №1. — C.13-17.

УДК 621.436

## А.В. Тринев, канд. техн. наук, П.Д. Гончар, асп.

# ВЛИЯНИЕ ЛОКАЛЬНОГО ВОЗДУШНОГО ОХЛАЖДЕНИЯ НА ТЕМПЕРАТУРУ КЛАПАННОЙ ПЕРЕМЫЧКИ ГОЛОВКИ ЦИЛИНДРОВ ФОРСИРОВАННЫХ АВТОТРАКТОРНЫХ ДИЗЕЛЕЙ

#### Введение

Разработка конкурентоспособных конструкций двигателей внутреннего сгорания, которые отвечают высоким показателям по топливной экономичности, надежности, моторесурсу, требует проведения детальных расчетных и экспериментальных исследований теплонапряженного состояния (ТНС) наиболее нагруженных деталей камеры сгорания, в частности головки цилиндров и деталей клапанного узла выпускного клапана. При этом ответственным этапом есть рациональный выбор способа охлаждения, который зависит от конкретной конструкции двигателя и его отдельных узлов, назначения, размерности и многого другого. Следовательно, выбор рациональной схемы охлаждения повысит надежность работы теплонапряженного узла и всего двигателя в целом.

## Обзор публикаций. Анализ нерешенных задач

Анализ работ, посвященных изучению закономерностей протекания теплообменных процессов в деталях камеры сгорания (КС) перспективных дизелей и влияние этих процессов на ТНС указанных деталей, показывает, что основными тенденциями и в настоящее время остаются дальнейшее форсирование параметров цикла для достижения высоких удельных показателей ДВС, а также повышение надёжности ДВС и его моторесурса. Однако форсированный рабочий процесс вызывает повышенную теплоотдачу от газа к стенкам камеры сгорания, следствием которой является рост температуры стенок и температурных градиентов в них, что обычно ограничивает степень форсировки. Поэтому при проектировании новых двигателей, доводке и анализе возможности форсирования уже существующих конструкций и в других случаях необходимо хотя бы ориентировочно оценить тепловое состояние наиболее важных деталей, образующих камеру сгорания.

Термометрия ГЦ на эксплуатационных режимах также позволяет выделить критические зоны детали, в которых развиваются термоусталостные трещины, являющиеся одной из основных причин выхода их из строя. Данный вывод подтверждается практикой ремонтных заводов. Так, по результатам анализа [1, 2], проведенных на ремонтных заводах, до 75% ГЦ имеют дефект – трещины в зоне клапанной перемычки (КП).

Анализ научно-технических и патентных изданий свидетельствует, что проблемой повышения надёжности ГЦ занимаются во всём мире. Существует множество способов решения данной проблемы: теплозащитные барьеры, тепловоды, технологические и конструктивные решения, локальное охлаждение

(ЛО). Системы ЛО, использующие в качестве хладагента сжатый воздух, отличаются от систем масляного и водяного охлаждения большей простотой изготовления и надёжностью, хотя и уступают по теплоотводящей способности. Простота и надёжность, а также оснащённость современных дизелей системами наддува, воздушными приводными компрессорами обусловили применение воздушных систем ЛО не только на тихоходных стационарных, судовых дизелях, но и на ряде быстроходных дизелей транспортного типа.

Проблема повышения надежности и улучшения температурного состояния клапанной перемычки ГЦ в нашем исследовании решается, главным образом, за счёт использования локального воздушного охлаждения (ЛВО).

#### Цели и задачи исследования

Целью данного исследования является получение экспериментальных данных (полей температур) днища ГЦ и седла выпускного клапана в базовом варианте и с различными вариантами ЛВО, а также оценка их эффективности. В последующем эти данные будут использованы для уточнения граничных условий задачи теплопроводности при расчетном моделировании. Поставленная задача решается путем термометрии днища головки и седла выпускного клапана на эксплуатационных режимах.

## Изложение основного материала

Объектом исследования был выбран форсированный быстроходный четырехтактный дизель типа СМД-23 (4ЧН12/14,  $N_e$ =117 кВт, n=2000 мин<sup>-1</sup>) с системой ЛВО. Схема дообработки ГЦ под установку термопар и для продувки сжатого воздуха, а также чертеж экспериментального седла выпускного клапана подробно рассматривалась в работах [3, 4].

Испытания двигателя с системой локального воздушного охлаждения проводились по нагрузочной характеристике на режимах с n = 1600 мин<sup>-1</sup> n = 2000 мин<sup>-1</sup>. Избыточное давление охлаждающего воздуха  $p_{RM}$  изменялось в пределах 0.15 - 0.2 МПа.

Проводилась также термометрия без подачи охлаждающего воздуха (с герметизацией трех отверстий в седле для выхода воздуха металлическими заглушками с плотной посадкой) — неохлаждаемый вариант. В табл. 1 и 2 представлены результаты термометрии седла выпускного клапана на стационарных режимах при различных давлениях охлаждения  $p_{BH} = 0.15 - 0.20 \text{ M}\Pi a.$ 

Из приведенных в табл. 1 и 2 температур видно, что температуры в седле выпускного клапана при номинальной частоте вращения n = 2000 мин<sup>-1</sup> выше температур при частоте, соответствующей максимальному кругящему моменту двигателя n = 1600мин<sup>-1</sup> на 35...50 °C. Температуры на всех исследуемых режимах различны по трем точкам, разнесенным по периметру седла. Это объясняется сложностью конструкции ГЦ, прохождением полостей охлаждения, впускного и выпускного коллекторов. Но главная причина в том, что охлаждающий воздух подводится со стороны точки 2 и именно этим объясняется самая низкая температура у этой точки. Воздух, протекая по полости охлаждения, нагревается и хуже охлаждает - температура точки 3 наибольшая из всех трех.

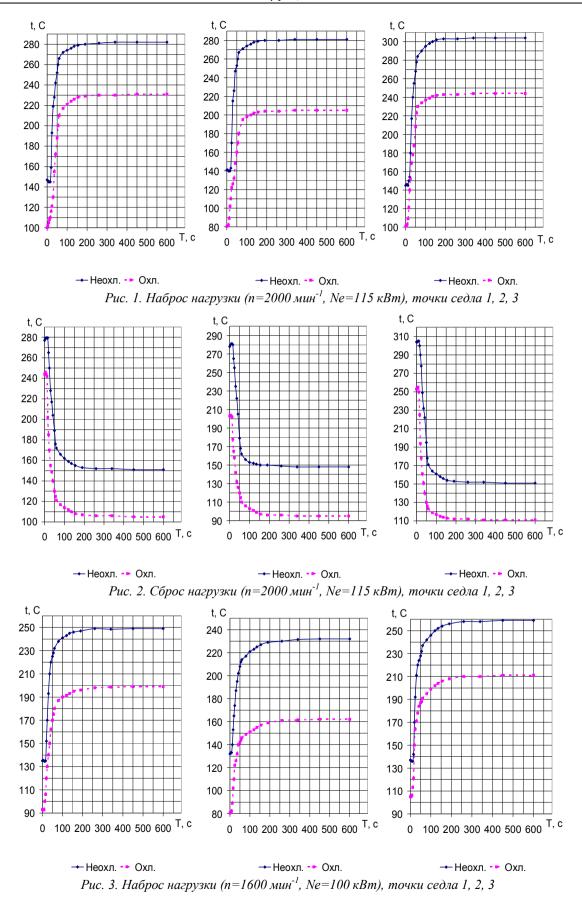
Таблица 1. Результаты термомометрии седла выпускного клапана при n=2000 мин<sup>-1</sup>

| ekiloro kitanana npi // 2000 Milii                    |             |      |      |     |      |  |  |  |
|-------------------------------------------------------|-------------|------|------|-----|------|--|--|--|
| № термо-                                              | $p_e$ , МПа |      |      |     |      |  |  |  |
| пары                                                  | 0,31        | 0,59 | 0,98 | 1,0 | 1,13 |  |  |  |
| базовый (неохлаждаемый) вариант                       |             |      |      |     |      |  |  |  |
| 1                                                     | 158         | 196  | 247  | 261 | 282  |  |  |  |
| 2                                                     | 151         | 198  | 249  | 263 | 280  |  |  |  |
| 3                                                     | 161         | 207  | 269  | 281 | 304  |  |  |  |
| охлаждаемый вариант ( $p_{BH} = 0.15 \text{ МПа}$ )   |             |      |      |     |      |  |  |  |
| 1                                                     | 131         | 173  | 222  | 228 | 257  |  |  |  |
| 2                                                     | 124         | 159  | 208  | 218 | 231  |  |  |  |
| 3                                                     | 143         | 176  | 234  | 243 | 267  |  |  |  |
| охлаждаемый вариант ( $p_{BH} = 0.2 \text{ M}\Pi a$ ) |             |      |      |     |      |  |  |  |
| 1                                                     | 105         | 159  | 204  | 218 | 244  |  |  |  |
| 2                                                     | 96          | 129  | 178  | 194 | 206  |  |  |  |
| 3                                                     | 123         | 168  | 219  | 231 | 253  |  |  |  |

Таблица 2. Результаты термомометрии седла выпускного клапана при n = 1600 мин<sup>-1</sup>

| ekilol o kiluliuliu lipii n 1000 mili                 |             |      |      |      |      |  |  |  |
|-------------------------------------------------------|-------------|------|------|------|------|--|--|--|
| № термо-                                              | $p_e$ , МПа |      |      |      |      |  |  |  |
| пары                                                  | 0,39        | 0,74 | 1,07 | 1,23 | 1,33 |  |  |  |
| базовый (неохлаждаемый) вариант                       |             |      |      |      |      |  |  |  |
| 1                                                     | 145         | 178  | 217  | 230  | 246  |  |  |  |
| 2                                                     | 143         | 175  | 214  | 222  | 233  |  |  |  |
| 3                                                     | 146         | 195  | 228  | 241  | 258  |  |  |  |
| охлаждаемый вариант ( $p_{BH} = 0.15 \text{ МПа}$ )   |             |      |      |      |      |  |  |  |
| 1                                                     | 113         | 151  | 179  | 199  | 218  |  |  |  |
| 2                                                     | 113         | 134  | 151  | 168  | 177  |  |  |  |
| 3                                                     | 129         | 157  | 188  | 203  | 211  |  |  |  |
| охлаждаемый вариант ( $p_{BH} = 0.2 \text{ M}\Pi a$ ) |             |      |      |      |      |  |  |  |
| 1                                                     | 104         | 133  | 165  | 186  | 197  |  |  |  |
| 2                                                     | 91          | 120  | 139  | 148  | 162  |  |  |  |
| 3                                                     | 109         | 138  | 172  | 191  | 206  |  |  |  |

Охлаждающий эффект проявляется на всех режимах. При избыточном давлении воздуха  $p_{BH} = 0,15$  МПа эффект охлаждения составил в среднем 25-50 °C. При давлении  $p_{BH} = 0,20$  МПа этот эффект усилился 35-75 °C. Причем, необходимо заметить, что охлаждение лучше проявило себя на режимах с частотой вращения, соответствующей максимальному кругящему моменту. Температуры ниже на этих точках по сравнению с режимом с номинальной частотой вращения на 5-10 °C.


Проводились также испытания на нестационарных режимах нагружения наброса-сброса нагрузки при постоянном давлении охлаждения  $p_{BH}=0,20$  МПа, а так же без охлаждения. Нагрузка изменялась от 0 и до 115 кВт для режима с n=2000 мин<sup>-1</sup> и до 100 кВт - n=1600 мин<sup>-1</sup>. На рис. 1 - 4 приведены результаты термометрии седла выпускного клапана на режимах наброса-сброса нагрузки.

Температура в контрольных точках седла 1-3 измерялась через интервалы 5 с и в течение 10 минут, за время необходимое для того, чтобы температура стабилизировалась. Из рис. 1-4 видно, что эффект охлаждения составляет от 40 до 70 °C. И наглядно проиллюстрирован на рис. 1-4.

### Выводы

1. Эксперимент подтвердил заметный разброс температур по периметру седла как для неохлаждаемого и охлаждаемого варианта. В данном случае в значительной степени проявляется локальный характер теплообменных процессов вблизи зоны седла, а именно - влияние проходящих вблизи каналов и полостей выпускного тракта и основной системы охлаждения. Указанное обстоятельство должно учитываться при задании граничных условий.

2. Локальное воздушное охлаждение седла выпускного клапана обеспечило снижение температуры наиболее ответственной зоны — опорной фаски для различных режимов в среднем на 30 — 70 °C. Увеличение эффекта охлаждения требует дальнейшего усовершенствования геометрии воздухоподводящих каналов, снижения гидравлических потерь, защиты полости воздушного охлаждения от воздействия отработавших газов. Изменяя направление и место подвода канала к седлу, можно влиять также и на характер распределения температур по периметру седла.



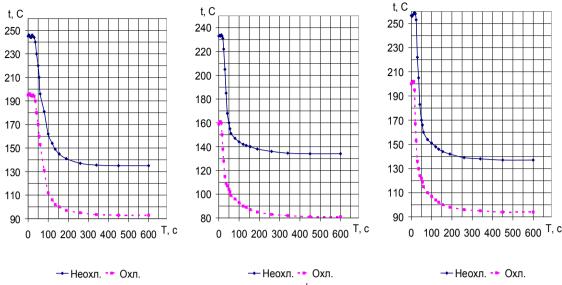



Рис. 4. Сброс нагрузки (n=1600 мин $^{-1}$ , Ne=100 кВт), точки седла 1, 2, 3

- 3. Результаты эксперимента позволили уточнить граничные условия задачи теплопроводности со стороны воздухоподводящих каналов и по посадочным поверхностям седла, а также наметить направления дальнейшего совершенствования охлаждаемых деталей клапанного узла и ГЦ в целом.
  - 4. Полученные результаты позволили:
- оценить достоверность результатов, полученных ранее при расчетных исследованиях различных вариантов сёдел, оказывающих определяющую роль в формировании ТНС ГЦ, в зоне перемычки;
- уточнить граничные условия для постановки нестационарной задачи ТНС седла выпускного клапана и клапанной перемычки;
- определить рациональные параметры системы ЛВО, энергетические затраты на функционирование системы и оценить эффективность указанной конструкции с точки зрения улучшения ТНС ГЦ.

Для усиления эффекта охлаждения требуется совершенствование геометрических параметров каналов, а также улучшение компоновочных решений по размещению каналов системы в ГЦ.

Полученные экспериментально температуры позволят нам с достаточной точностью смоделировать расчетными методами ТНС ГЦ, оценить уро-

вень напряжений и объяснить причины возникновения термоусталостных трещин.

#### Список литературы:

1. Межецкий Г.Д., Чекмарев В.В., Кузнецов В.К., Балдуев А. А. Увеличение глубины термоусталостных трещин в головках цилиндров дизелей при эксплуатации. // Двигателестроение. – 1991. - №2. – С. 35-41. 2. Косырев С.П., Разуваев А.В., Рафиков Р.М. Теплонапряженность цилиндровой крышки высокофорсированного дизеля. // Двигателестроение. – 2002. - №2. – С. 17-18. 3. Тринев А.В., Гончар П.Д. Использование локального воздушного охлаждения для улучшения теплонапряженного состояния головки цилиндров форсированного автотракторного дизеля // Двигатели внутреннего сгорания: Всеукр. научн.-техн. журн. – Харьков, HTV "XПИ". – 2003. **-**№1-2. – С. 73-76. 4. Гончар П.Д. Экспериментальная оценка температурного состояния головки цилиндров в условиях локального охлаждения // Автомобильный транспорт. Сборник научных трудов. Вып. 16. – Харьков, ХНАДУ. – 2005. - №1. – С. 293-295.