УДК 534.068.5, 538.95

Огурцов А.Н.

РАДИАЦИОННЫЕ НАНОТЕХНОЛОГИИ МОДИФИКАЦИИ МОДЕЛЬНЫХ КРИСТАЛЛОВ ЭЛЕКТРОННЫМИ ВОЗБУЖДЕНИЯМИ: 1. ЛОКАЛИЗАЦИЯ ЭЛЕКТРОННЫХ ВОЗБУЖДЕНИЙ И ПОДПОРОГОВОЕ ДЕФЕКТООБРАЗОВАНИЕ

Радиационные технологии широко используются для обработки материалов. В отличие от традиционных химических и механических технологий, которые вынуждены использовать термическую обработку и/или технику высоких давлений, а зачастую и катализаторы для ускорения реакций, облучение материалов является уникальным источником энергии, который способен инициировать химические реакции при любых температурах и давлениях без использования катализаторов [1]. В последнее время, наряду с достаточно подробно изученными эффектами воздействия на материалы пучков высокоэнергетичных частиц, способных создавать значительные зоны (треки) структурных повреждений в образцах, всё большее внимание исследователей привлекают технологии контролируемой модификации свойств материалов фотонами и пучками частиц с энергией ниже порога создания дефекта кристаллической структуры по механизму упругого соударения с атомом образца – так называемое подпороговое возбуждение [2]. Технологический диапазон подпороговых радиационных эффектов охватывает широкую область процессов от традиционных фотографии и фотолитографии [3] до фотосинтеза в биообъектах [4] и стимуляции фазовых переходов в неметаллах [5]. Значительное разнообразие подпороговых процессов требует как развития аналитических методов, обеспечивающих контроль за наномодификациями образца, так и тщательного подбора специфических для исследуемого эффекта модельных объектов.

Атомарные кристаллы конденсированных на криогенных подложках инертных газов, твердых Хе, Кг, Аг, Ne, традиционно используются в качестве модельных объектов в физике твердого тела [6], а также широко применяются в качестве инертных матриц при исследовании процессов в химии твердого тела [7,8]. В них сочетается простота кристаллической решетки, слабость межатомных взаимодействий по сравнению с внутриатомными и наличие широкого спектра электронных взаимодействий, детальное исследование которых было проведено в последнее время [9–12].

В настоящей работе для выявления каналов релаксации и взаимных превращений электронных возбуждений в кристаллах Хе, Кг, Аг, Ne, и для детектирования элементарных актов перестройки кристаллической решетки – подпорогового дефектообразования – были использованы эффект сосуществования свободных и двух типов автолокализованных экситонов и наличие большого количества полос в спектрах люминесценции, отражающих многообразие динамики электронных возбуждений в атомарных кристаллах. Сочетание методов люминесцентного и кинетического анализа [13] позволило адекватно описать радиационно-стимулированную эволюцию кристаллической структуры и динамику накопления дефектов.

Экспериментальное исследование неупругих элементарных радиационностимулированных процессов в атомарных криокристаллах осложняется необходимостью одновременного использования в эксперименте низкотемпературной (гелиевой) техники выращивания и манипулирования образцами, спектроскопической аппаратуры для вакуумного ультрафиолета и рентгеновской областей спектра, высокочувствительных детекторов нейтральных и заряженных частиц, а также интенсивных источников селективного возбуждения образцов. Именно поэтому изучение радиационноиндуцированных процессов дефектообразования и десорбции в криокристаллах было начато относительно недавно [14].

Для изучения каналов релаксации энергии электронного возбуждения, различных подпороговых неупругих процессов и для проведения люминесцентнокинетического анализа мы использовали взаимодополняющие методики катодолюминесцентной спектроскопии (возможность варьировать глубину, на которую осуществлялось возбуждение образца, изменяя энергию пучка электронов) и фотолюминесценции (селективное возбуждение импульсным синхротронным излучением на светосильной установке Superlumi, которая смонтирована на канале I накопительного кольца DORIS-III Гамбургской синхротронной лаборатории HASYLAB Международного синхротронного центра DESY в Германии).

Катодолюминесценция исследовалась в диапазоне энергий электронов 100–2500 эВ, в температурном диапазоне 4,2–100 К и спектральном диапазоне 30–300 нм. Фотолюминесцентная спектроскопия с временным разрешением исследовалась при селективном фотовозбуждении первичным монохроматором со спектральным разрешением $\Delta \lambda = 0,2$ нм в вакуумном ультрафиолете в диапазоне энергий фотонов 5–40 эВ и регистрации люминесценции двумя вторичными монохроматорами со спектральным разрешением $\Delta \lambda = 1$ нм и $\Delta \lambda = 0,2$ нм в диапазоне энергий фотонов 4–45 эВ. Подробное описание установок и методов выращивания образцов выходит за рамки данной работы и составляет предмет отдельных публикаций [15,16].

Основные свойства криокристаллов инертных элементов Xe, Kr, Ar, Ne определяются тем, что они образованы из атомов, имеющих заполненные внешние электронные оболочки и обладающих сферической симметрией. В основном состоянии атомы имеют электронную конфигурацию ns^2np^6 , где n = 2,3,4,5 для атомов неона, аргона, криптона и ксенона, соответственно. По типу связи криокристаллы инертных элементов относятся к классу молекулярных кристаллов. Узлы кристаллической решетки этих веществ заняты идентичными атомами, которые связаны между собой слабыми корот-кодействующими силами Ван-дер-Ваальса.

Кулоновское взаимодействие электронов и дырок в атомарных криокристаллах приводит к образованию экситонов, которые могут быть представлены в виде резонансной передачи атомного возбуждения по решетке (модель Френкеля) или как движение связанной пары электрон-дырка (модель Ванье-Мотта). Оптическое поглощение в экситонной области спектра имеет дублетную структуру вследствие спинорбитального расшепления валентной зоны в центре зоны Бриллюэна $\vec{k} = 0$. Компоненты дублетов образуют две водородоподобные серии. Экситоны, образованные кулоновским связыванием электрона с дырками с полным моментом j = 1/2 и j = 3/2 в центре зоны Бриллюэна, обычно называют Г(1/2) и Г(3/2) экситонами. Экситоны в криокристаллах инертных элементов непосредственно после возбуждения являются делокализованными (свободные экситоны) и распространяются по решетке в виде слабо затухающей волны. Это состояние свободных экситонов принято обозначать FE ("free excitons"). Вследствие сильного экситон-фононного взаимодействия свободные экситоны и дырки в кристаллах инертных элементов автолокализуются [17]. Автолокализованные экситоны, STE ("self-trapped excitons"), формируют состояния квазиатомного, A-STE, или квазимолекулярного, M-STE, типа в зависимости от знака ("+" или "-") сродства к электрону χ (превышение энергетического положения вакуумного уровня электрона V_0 над положением дна зоны проводимости: $\chi = V_0 - E_g$). Отрицательное сродство к электрону означает, что электрон приобретает дополнительную кинетическую энергию, покидая поверхность кристалла.

Сосуществование свободных и автолокализованных электронных возбуждений приводит к наличию в спектре люминесценции криокристаллов большого числа различных полос. На рис. 1 в качестве примера представлены спектры фотолюминесценции, зарегистрированные при возбуждении фотонами с энергиями равными ширине запрещенной зоны E_g .

Рисунок 1 — Спектры фотолюмине
сценции кристаллов Xe, Kr, Ar, Ne при $T=5~{\rm K}$ и энергии возбуждающих фотоно
в $h\,\nu=E_{\rm g}$

Наиболее интенсивной особенностью спектров люминесценции Ar, Kr, Xe является так называемая *M*-полоса, формируемая ${}^{1,3}\Sigma_u^+ \rightarrow {}^1\Sigma_g^+$ переходами в молекулярном автолокализованном экситоне [9]. Те же переходы ${}^{1,3}\Sigma_u^{+}(\nu) \rightarrow {}^1\Sigma_g^+$ в излучательном распаде эксимеров, колебательная релаксация которых не завершена, формируют *W*полосы. Излучательный распад квазиатомных автолокализованных экситонов формирует систему узких квазиатомных полос *A* в спектрах аргона и неона [10]. Отрицательное сродство к электрону (табл. 1 [12]) является движущей силой образования микрополости ("bubble") вокруг A-STE в объеме кристалла и десорбции атомов и эксимеров с поверхности твердых Ne и Ar [17].

Таблица 1 — Некоторые параметры зонной структуры и люминесценции атомарных криокристаллов

	Xe	Ke	Ar	Ne
Ширина запрещенной зоны в Г-точке, $E_{\rm g}$ (эВ)	9,298	11,59	14,14	21,58
Энергия связи атома, \mathcal{E}_{b} (эВ)	0,172	0,123	0,088	0,026
Сродство к электрону, χ (эВ)	0,5	0,3	-0,4	-1,3
Положение дна экситонной зоны $\Gamma(3/2)$, <i>FE</i> (эВ)	8,37	10,14	12,06	17,36
Постоянная решетки а, нм	0,613	0,564	0,531	0,446
Высота барьера к M-STE образованию, $H_{\text{max}}^{\text{M}}$ (мэВ)	20	10	2	0,3
Высота барьера к А-STE образованию, H^{A}_{max} (мэВ)		30	10	1
Выделение энергии при M-STE, E_{M}^{*} (эВ)	0,45	0,75	1,25	
Выделение энергии при A-STE, $E_{\rm A}^*$ (эВ)			0,2	0,58
Порог возбуждения M_1 -компоненты, E_1 (эВ)	8,18	9,87	11,61	
Порог возбуждения М ₂ -компоненты, E ₂ (эВ)	8,28	10,03	11,81	

Исследование заряженных центров в атомарных криокристаллах позволили идентифицировать *H*-полосы как твердотельный аналог "третьих" молекулярных континуумов, которые формируются переходами в молекулярных ионах из состояний $(R_2^+)^*$ (асимптотически соответствующих основному состоянию иона R^+ и возбужденному состоянию атома $R^+({}^{3}P_{1,2})$) в состояния R_2^+ (асимптотически соответствующие основным состояния иона R^+ и атома R) [18]. Здесь и далее R – обозначает атом инертного элемента.

Радиационный распад свободных экситонов со дна нижайшей $\Gamma(3/2)$, n=1 экситонной зоны формирует полосы FE (рис. 1) в спектрах твердых Xe и Kr. Схема в модели конфигурационных координат, иллюстрирующая переходы, формирующие полосы люминесценции, представлена на рис. 2(а). В случае M-STE, конфигурационной координатой, Q_M , является межъядерное расстояние в квазимолекуле (рис. 2(б)). В случае A-STE, конфигурационной координатой, Q_A , является радиус микрополости (радиус первой конфигурационной сферы).

Рисунок 2 – Потенциальные кривые (а) и схематическая структура квазиэксимерных (б) и квазиатомных (в) автолокализованных экситонов

На схеме также указаны барьеры H_{max} , разделяющие состояния свободных и автолокализованных экситонов и энергия E^* , выделяющаяся в решетку при автолокализации экситонов. $Q_{\rm M}$ и $Q_{\rm A}$ не равны нулю в центре потенциальной диаграммы, который представляет собой недеформированную решетку. Квазиатомные и квазиэксимерные состояния представляют собой возбужденный атом или эксимерную молекулу в микрополости, образующейся при смещении окружающих атомов (рис. 2). При квазиатомной автолокализации ($\chi < 0$) полость образуется за счет расталкивания ближайших соседей электронным облаком возбужденного атома [17]. В случае квазиэксимерной автолокализации ($\chi > 0$) происходит сближение соседних атомов решетки с образованием центра, сходного с эксимерной молекулой R_2^* , что сопровождается анизотропной деформацией решетки. Эти две ситуации соответствуют различным направлениям в конфигурационном пространстве $Q_{\rm M}$ и $Q_{\rm A}$ [10].

Разрыв межатомной связи в кристаллической решетке, вследствие облучения кристалла потоком частиц, может быть стимулирован как баллистическим ударом, при котором кинетическая энергия налетающей частицы частично передается атому, покидающему узел кристаллической решетки, так и созданием электронных возбуждений в кристалле, которые переносят энергию к необходимому участку образца [2]. При подпороговом возбуждении стабильный точечный дефект кристаллической решетки может быть образован вследствие распада электронного возбуждения если энергия $\Delta E_{\rm 3B}$, высвобождаемая при его распаде или трансформации, больше пороговой энергии $E_{\rm AC}$, необходимой для смещения атома в междоузельное положение ($\Delta E_{\rm 3B} > E_{\rm AC}$, энергетический критерий), и если электронное возбуждение является локализованным вблизи данного узла решетки, то есть его время жизни на данном атоме решетки τ_{3B} больше, чем время смещения атома из положения равновесия τ_{AC} ($\tau_{3B} > \tau_{AC}$, временной критерий) [5].

Автолокализация экситонов в атомарных криокристаллах удовлетворяет этим критериям: энергия электронных возбуждений намного превышает энергию связи атома в решетке $\varepsilon_{\rm b}$ (табл. 1) и разнообразные процессы автолокализации концентрируют эту энергию в объеме порядка атомной ячейки. Высокий квантовый выход люминесценции [19] позволяет нам не учитывать безызлучательные переходы и заселение антисвязывающего ${}^{1}\Sigma_{g}^{+}$ основного молекулярного состояния, которое традиционно рассматривалось как основной источник кинетической энергии при дефектообразовании и десорбции атомов в основном состоянии [17] – так называемый GS-механизм ("ground-state"). С другой стороны, процесс формирования A-STE и M-STE сам по себе сопровождается значительным выделением энергии в кристаллическую решетку, $E_{\rm M}^*$ и $E_{\rm A}^*$, которое также превосходит энергию связи атома $\varepsilon_{\rm b}$ (табл. 1 и рис. 2(а)). Такой механизм дефектообразования, стимулированного формированием автолокализованного состояния экситона получил название "excited-state" или ES-механизм [12].

Эксперименты, проведенные как при различной энергии возбуждающих электронов и фотонов, так и с образцами различного кристаллического качества показали, что полосы M квазиэксимерной люминесценции криокристаллов Xe, Kr и Ar не элементарны (рис. 3) – каждую из них можно аппроксимировать двумя гауссианами: низкоэнергетичной компонентой M_1 и высокоэнергетичной компонентой M_2 . Компонента M_2 доминирует в люминесценции образцов высокого кристаллического качества. Спектры образцов, содержащих большое количество дефектов решетки, определяются в основном дефектной компонентой M_1 . В диапазоне энергий ниже дна экситонной зоны $\Gamma(3/2)$, n = 1 возбуждается только компонента M_1 (рис. 3(б)).

Трансформация *М*-полосы, которая наблюдается в результате изменения глубины проникновения электронов (рис. 3(а)) в образец, или вследствие его облучения, приводящего к деградации кристаллической структуры (рис. 3(в)), полностью описывается перераспределением интенсивности между двумя ее компонентами. Спектроскопические характеристики компонент приведены в табл. 2.

Рисунок 3 – (а) – *М*-полоса в катодолюминесценции твердого Хе при возбуждении электронами с энергиями (1) 0,5 кэВ и (2) 2 кэВ при *T*=5 K; (б) – структура спектра молекулярной люминесценции твердого Kr при селективном возбуждении фотонами с энергиями (1) *hv*=10,02 эВ; (2) *hv*=10,6 эВ (*T*=6 K); (в) – *М*-полоса твердого Ar (1) до и (2) после облучения образца синхротронным излучением при *T*=15 К

Таблица 2 – Энергетическое положение и пол	луширина компонент <i>М</i> -пол	ос лю-
минесценции атомарных криокристаллов		

	M_1^{Xe}	M_2^{Xe}	$M_1^{\rm Kr}$	M_2^{Kr}	$M_1^{\rm Ar}$	$M_2^{\rm Ar}$
Положение, эВ	7,05	7,22	8,44	8,64	9,65	9,82
Полуширина, эВ	0,30	0,30	0,44	0,41	0,52	0,50

Спектры фотовозбуждения компонент M_1 и M_2 , восстановленные из последовательности спектров люминесценции (рис. 4), характеризуется пороговыми энергиями E_1 и E_2 , начиная с которых возбуждается соответствующая полоса (табл. 1). Разность $E_{FE} - E_1$ возрастает с уменьшением атомного веса и достигает значений 0,18 эВ для ксенона, 0,3 эВ для криптона и 0,45 эВ для аргона.

Рисунок 4 – Спектры фотовозбуждения *М*-полос Xe, Kr, Ar при *T*=7 К и спектры возбуждения компонент *M*₁ (●) и *M*₂ (○)

Эксперименты по зондированию распределения излучающих центров по глубине образцов, варьируя энергию возбуждающих электронов, и фотолюминесцентные эксперименты с многослойными образцами показали [20], что молекулярные полосы M и H содержат вклад центров, локализованных на поверхности кристалла, однако основная часть молекулярных излучающих центров расположена в объеме образца. Разгорание компоненты M_1 под действием облучения было зарегистрировано в катодо- и фотолюминесценции для образцов Xe, Kr и Ar [12]. Селективное возбуждение кристаллов в области энергий $\Gamma(3/2)$, n = 2 экситонов [21] доказало экситонную природу механизмов дефектообразования. Фотопоглощение квазиэксимерных центров в диапазоне энергий $E_1 < E < E_2$ обнаружено методом люминесцентной спектроскопии с временным разрешением [22].

Дозовые зависимости интенсивности компонент являются точным и чувствительным инструментом исследования дефектообразования, причем автолокализованные экситоны могут быть использованы как для стимуляции процесса дефектообразования, так и для мониторинга динамики процесса перестройки решетки. Во всех случаях, как при облучении образцов электронным пуском, так и при фотовозбуждении в экситонной области спектра, значительный рост дефектной M_1 -компоненты полосы M в результате облучения и неизменность M_2 -компоненты (рис. 3(в) и работы [12,14,16,21]) свидетельствовали о накоплении стабильных долгоживущих дефектов в кристаллической решетке Хе, Кг и Аг. Поскольку энергия автолокализации выделяется в решетку в объеме порядка атомной ячейки, что исключает формирование трех-, двух- или одномерных дефектов, то единственно возможным типом дефектов является образование дефектов по Френкелю – пары вакансия – междоузельный атом, – которые являются точечными наноразмерными дефектами. В настоящее время считается, что ES-механизм реализуется путем автолокализации экситона в квазиэксимерное центросимметричное состояние (рис. $5(a)\rightarrow(b)$) с последующим смещением квазиэксимера (конфигурационное смещение) вдоль оси <110> в нецентросимметричное положение (рис. $5(b)\rightarrow(b)$) и переориентацией его (стабилизация дефекта) вдоль направления <100> (рис. 5(r)).

Рисунок 5 – Схема ES-механизма образования дефектов

При этом после излучательного распада стабилизированного центра (рис. 5(r)) в решетке остается стабильный дефект в виде вакансии и междоузельного атома в гантельной конфигурации, расстояние между которыми порядка 1 нм, в то время как излучательный распад квазиэксимера в нестабилизированном состоянии (рис. 5(в)) возвращает решетку в исходное бездефектное состояние. Поэтому, конфигурация (рис. 5(в)) может рассматриваться как метастабильный короткоживущий дефект решетки, который, наряду со стабильными наноразмерными дефектами, дает вклад в интенсивность "дефектной" M_1 -полосы, но не накапливающийся в решетке. Компонента M_2 формируется излучательными распадами квазиэксимеров в конфигурации (рис. 5(б)).

Чрезвычайная чувствительность люминесценции атомарных криокристаллов к дозе облучения, делает перспективным их использование в целях дозиметрии. Кроме того, сам ход зависимости интенсивности компонент люминесценции от времени облучения характерен для каждого образца и может быть использован для сертификации образцов, что, безусловно, необходимо для аналитического контроля как процесса выращивания криокристаллов, так и твердотельных радиационно-стимулированных процессов, а также при сравнении результатов экспериментов, проведенных с разными образцами. Однако до настоящего времени не было попыток провести кинетический анализ дозовой кривой – зависимости интенсивности дефектной компоненты от времени.

В самом общем виде процесс накопления дефектов может быть записан в виде

$$E + T \xrightarrow[k_{-S}]{k_{-S}} S \xrightarrow{k_{D}} D , \qquad (1)$$

где экситон *E* локализуется на центре локализации *T* и с константой скорости k_S образуется метастабильный локальный центр *S* (A-STE или M-STE), который можно рассматривать как метастабильный короткоживущий дефект решетки, и который далее преобразуется либо в процессе $S \rightarrow D$ с константой скорости k_D в стабильный дефект *D*, либо в обратном процессе $S \rightarrow T$ с константой скорости k_{-S} после радиационного распада экситона метастабильный дефект исчезает, не оставив стабильного нарушения кристаллической структуры. Кинетическое уравнение для концентрации метастабильных *S*-центров n_S в процессе (1) имеет вид [23]:

$$\frac{dn_{\rm S}}{dt} = k_{\rm S} n_{\rm E} n_{\rm T} - f_{-\rm S} n_{\rm S} - f_{\rm D} n_{\rm S}.$$
(2)

Число экситонов в облучаемом объеме, $n_{\rm E}$, пропорционально времени облучения $n_{\rm E} = \Omega \cdot t$, где интегральный параметр Ω является функцией эффективности источника возбуждения кристалла, коэффициента поглощения, времени жизни экситона, квантового выхода люминесценции и эффективности её регистрации спектральным прибором и фотодетектором. Важно, что для идентичных условий возбуждения образцов, выращенных в идентичных условиях, этот параметр можно считать аппаратной константой установки. Начальная концентрация центров локализации, $n_{\rm T}^0$, является суммой текущей концентрации $n_{\rm T}$ и $n_{\rm S}$: $n_{\rm T}^0 = n_{\rm T} + n_{\rm S}$. В квазистационарных условиях возбуждения, когда $dn_{\rm S}/dt = 0$, зависимость интенсивности дефектной компоненты от времени будет иметь вид

$$I(t) = I_0 + \frac{K \cdot t}{L+t},\tag{3}$$

где $I_0 = I(0)$ – интенсивность дефектной компоненты в начальный момент времени за счет дорадиационных дефектов, образовавшихся в образце в процессе выращивания; $K = k_{\rm D} n_{\rm T}^0$ – максимальное значение, которого достигает $(I(t) - I_0)$ при $t \to \infty$; $L = (k_{\rm -S} + k_{\rm D})/(k_s \cdot \Omega)$ – характеристическая константа для данного образца (при идентичных условиях возбуждения и регистрации люминесценции образцы, в которых эфективность процессов дефектообразования выражены слабее, будут иметь большее значение K).

На рис. 6(а) представлена дозовая кривая компоненты M_1 твердого ксенона из работы [12] и ее аппроксимация по формуле (3).

Линеаризация выражения (3) в форме

$$\frac{1}{I(t) - I_0} = \frac{1}{K} + \frac{L}{K} \frac{1}{t}$$
(4)

позволяет определить значение констант *K* и *L* по пересечению интерполяционной прямой с осями на графике в координатах: обратная интенсивность $(I(t) - I_0)^{-1}$, обратное время $(t)^{-1}$ (рис. 6(б)). Для данной дозовой кривой (рис. 6) эти значения

K = 1500 срs и L = 40 мин. Анализ кинетических кривых радиационностимулированных процессов в твердых Kr, Ar, Ne проводится в настоящее время и его результаты будут приведены в последующих публикациях.

Таким образом, подводя итог, следует заметить, что подпороговое возбуждение атомарных криокристаллов фотонами или электронным пучком генерирует широкий спектр свободных и автолокализованных электронных возбуждений, эволюция которых приводит к формированию наноразмерных стабильных точечных дефектов в виде пар Френкеля. Оценки выделения энергии в кристаллическую решетку в ходе автолокализации экситонов и сравнение симметрии образующегося метастабильного дефекта с ориентацией стабильного междоузельного атома в гантельной конфигурации позволили предложить непротиворечивый ES-механизм дефектообразования, стимулированного автолокализацией экситонов в атомарных криокристаллах.

Впервые предложен люминесцентно-кинетический метод анализа процесса накопления радиационно-стимулированных наноразмерных стабильных дефектов в атомарных криокристаллах, который может быть использован для аналитического контроля твердотельных реакций дефектообразования и сертификации выращиваемых кристаллов инертных элементов.

Литература

1. Chmielewski A.G., Haji-Saeid M. Radiation technologies: past, present and future // Radiation Physics and Chemistry. – 2004. – V.71, №1. – P. 16–20.

2. Itoh N., Stoneham A.M. Materials Modification by Electronic Excitation. – Cambridge: Cambridge University Press, 2001. – 520 p.

3. Лущик Ч.Б., Лущик А.Ч. Распад электронных возбуждений с образованием дефектов в твердых телах. – М.: Наука, 1989. – 264 с.

4. Nanofabrications Towards Biomedical Applications / Ed. by C. Kumar, J. Hormes, C. Leuschner. – Weinheim: Wiley, 2005. – 420 p.

5. Юнусов М.М., Абдурахманова С.Н., Зайковская М.А., Маннанова Х.Х., Оксенгендлер Б.Л. Подпороговые радиационные эффекты в полупроводниках. – Таш-кент: Фан, 1989. – 224 с.

6. Physics of Cryocrystals / Ed. by V.G. Manzhelii, Yu.A. Freiman. – New York: AIP Press, 1997. – 691 p.

7. Bondybey V.E., Räsänen M., Lammers A. Rare-gas matrices, their photochemistry and dynamics: recent advances in selected areas // Annual Report on Progress in Chemistry, Section C. – 1999. – V. 95, N 1. – P. 331–372.

8. Вест А. Химия твердого тела. – М.: Мир, 1988. – 334 с.

9. Schwentner N., Koch E.-E., Jortner J. Electronic excitations in condensed rare gases. – Berlin: Springer-Verlag, 1985. – 239 p.

10. Zimmerer G. Creation, motion and decay of excitons in rare-gas solids // Excited-state spectroscopy in solids. – Bologna: Corso, 1987. – P. 37–110.

11. Fugol I.Ya. Free and self-trapped excitons in cryocrystals: Kinetics and relaxation processes // Advances in Physics – 1988. – V. 37, № 1. – P. 1–35.

12. Ogurtsov A.N. Advances in Spectroscopy of Subthreshold Inelastic Radiation-Induced Processes in Cryocrystals / Spectroscopy of Emerging Materials / Ed. by E.C. Faulques, D.L. Perry, A.V. Yeremenko. – Dordrecht: Kluwer Academic Publishers, 2004. - P. 45-56.

13. Васильев В.П. Аналитическая химия. В 2 ч. Ч. 2. Физико-химические методы анализа. – М.: Высшая школа, 1989. – 384 с.

14. Савченко Е.В., Огурцов А.Н. Деформация криокристаллов Хе, индуцированная электронными возбуждениями // Украинский Физический Журнал. – 1993. – Т. 38, № 1. – С. 108–113.

15. Огурцов А.Н. Экспериментальные аналитические методы исследования подпороговых радиационно-индуцированных процессов в криокристаллах: 1. Катодолюминесцентная спектроскопия // Вестник НТУ "ХПИ". – 2005. – в печати.

16. Ogurtsov A.N., Savchenko E.V., Sombrowski E., Vielhauer S., Zimmerer G. Exciton self-trapping into diatomic and triatomic molecular complexes in xenon cryocrystals // Low Temperature Physics. -2003. - V.29, No 9. - P. 858-861.

17. Song K.S., Williams R.T. Self-trapped excitons. – Berlin: Springer-Verlag, 1996. – 404 p.

18. Ogurtsov A.N., Savchenko E.V., Becker J., Runne M., Zimmerer G. Photoelectron scattering in CO doped solid Ar // Chemical Physics Letters – 1997. – V. 281, № 4-6. – P. 281–284.

19. Grosjean D.E., Vidal R.A., Baragiola R.A., Brown W.L. Absolute luminescence efficiency of ion-bombarded solid argon // Physical Review B. – 1997. – V. 56, № 11. – P. 6975-6981.

20. Ogurtsov A.N., Savchenko E.V. Molecular Trapped Centers in Atomic Cryocrystals // Journal of Low Temperature Physics. – 2001. – V.122, № 3/4. – P. 233–240.

21. Ogurtsov A.N., Savchenko E.V., Vielhauer S., Zimmerer G. Excitonic Mechanisms of Inelastic Radiation-Induced Processes in Rare-Gas Solids // Journal of Lumines-cence. – 2005. – V.112, №1. – P. 97–100.

22. Ogurtsov A.N., Savchenko E.V., Gminder E., Vielhauer S., Zimmerer G. Photon yield from solid krypton and xenon at the edge of exciton absorption // Surface Reviews and Letters. -2002. - V. 9, No 1. - P. 45-49.

23. Atkins P., De Paula J. Physical Chemistry, 7th ed. – Oxford: Oxford University Press, 2002. – 1087 p.

УДК 534.068.5, 538.95

Огурцов О.М.

РАДІАЦІЙНІ НАНОТЕХНОЛОГІЇ МОДИФІКАЦІЇ МОДЕЛЬНИХ КРИСТАЛІВ ЕЛЕКТРОННИМИ ЗБУДЖЕННЯМИ: 1. ЛОКАЛІЗАЦІЯ ЕЛЕКТРОННИХ ЗБУДЖЕНЬ ТА ПІДПОРОГОВЕ ДЕФЕКТОУТВОРЕННЯ

Стаття присвячена дослідженню радіаційних технологій модифікації кристалічної гратки у модельних кристалах інертних газів, головним чином процесам підпорогового радіаційно-індукованого дефектоутворення в атомарних кріокристалах, стимульованого автолокалізацією екситонів. Запроваджений люмінесцентно-кінетичний метод аналізу дозових кривих дозволяє моделювати елементарні непружні процеси, що дає можливість аналітичного контролю та сертифікації кристалів Xe, Kr, Ar и Ne.