УДК 621.924.95

Воронин С.Е., Долгополов В.Г., Костенко И.В., Курцев С.Н., Скрипкин Н.Р., Федянин А.В.

ОБ УВЕЛИЧЕНИИ ПРОИЗВОДИТЕЛЬНОСТИ ДРОБЕСТРУЙНОЙ КАМЕРЫ ВСАСЫВАЮЩЕГО ТИПА

Введение

В настоящее время в машиностроении широко применяется струйно-абразивная обработка материалов для очистки отливок от формовочных и стержневых смесей, разнообразного вида поковок от окалины, металлопроката от ржавчины и металлургической окалины, а также для подготовки поверхности под окраску, зачистки кромок под сварку, пайку, склейку, упрочнения поверхностного слоя металла, декоративной отделки материалов и т.д. Благодаря высоким производственным показателям (простота эксплуатации, малая стоимость оборудования и низкие эксплуатационные расходы), способ струйно-абразивной очистки материалов постепенно вытесняет другие виды очистки (огневая, химическая, механическая и т.д.).

Анализ существующих установок

В зависимости от вида энергоносителя, сообщающего движение зернам абразива, струйно-абразивные способы очистки поверхности могут быть различны (абразивно-пневматический, абразивно-центробежный, абразивно-гравитационный и др.) [6].

Рассмотрим несколько видов установок для абразивно-пневматической очистки. На рис. 1 показана дробеструйная камера всасывающего типа.

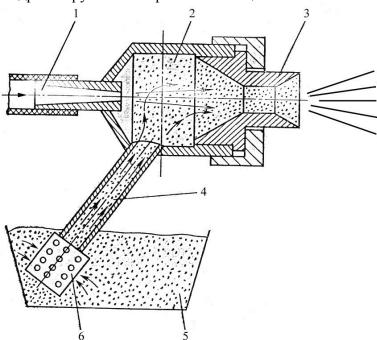


Рисунок 1 — Дробеструйная камера всасывающего типа: 1 — сопло; 2 — камера-смеситель; 3 — калибрующее сопло; 4 — патрубок; 5 — бункер; 6 — насадок

В аппаратах всасывающего типа струя воздуха, выходящая из сопла 1, создает в камере-смесителе 2 и патрубке 4 разрежение, в результате которого в патрубок 4 через отверстия в насадке 6 засасывается атмосферный воздух, перемещающий металлическую дробь из бункера 5 в смеситель. Металлическая дробь подхватывается потоком воздуха из сопла 1, направляется в калибрующее сопло 3 и из него в виде абразивной струи подается на обрабатываемую поверхность. Аппараты всасывающего типа используются для непрерывного процесса очистки, имеют простую систему питания, но при одинаковых диаметрах рабочего сопла и одинаковых значениях параметров (давление воздуха, тип и грануляция дроби) производительность по абразиву (кг/мин) у аппаратов всасывающего типа на 15–25 % ниже, чем у аппаратов нагнетательного типа (рис. 2, 3).

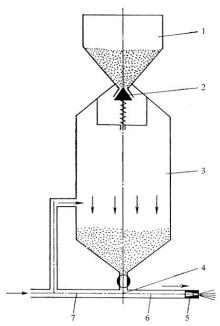


Рисунок 2 — Дробеструйный аппарат нагнетательного типа периодического действия:

1 – бункер; 2 – клапан; 3 – камера; 4 – смеситель; 5 – сопло; 6 – шланг; 7 – трубопровод

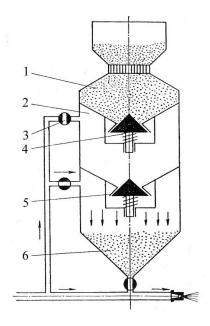


Рисунок 3 — Дробеструйный аппарат нагнетательного типа непрерывного действия: 1 — бункер; 2 — верхняя камера; 3 — вентиль; 4 — клапан; 5 — клапан; 6 — нижняя камера

В аппаратах нагнетательного типа периодического действия (рис. 2) абразив из питательного бункера 1 через клапан 2 периодически подается в камеру 3, находящуюся под давлением сжатого воздуха. Из камеры абразив поступает в смеситель 4, где подхватывается потоком воздуха, поступающего из магистрали по трубопроводу 7. Смесь воздуха с абразивом по шлангу 6 поступает к соплу 5 и затем в виде струи направляется на обрабатываемую поверхность.

Такие установки имеют рабочую камеру, в которую засыпается определённая порция абразива. После израсходования абразива аппарат перезаряжают, для чего снижают давление в рабочей камере, открывают клапан 2 и засыпают новую порцию абразива.

С целью ликвидации остановов технологического процесса очистки, связанных с наполнением камеры абразивом, применяются аппараты непрерывного действия или двухкамерные (рис. 3).

Работа двухкамерных аппаратов заключается в следующем: из бункера 1 в верхнюю камеру 2 через клапан 4 засыпается абразив. Когда абразив в нижней рабочей камере 6 кончается, в верхней камере открывается вентиль 3 и создаётся давление, равное давлению в рабочей камере. Клапан 4 под действием давления в верхней камере закрывается, что прекращает поступление абразива. Клапан 5 ввиду равенства давлений в камерах 2 и 6 открывается и абразив, под действием силы тяжести, из верхней камеры пересыпается в рабочую, после чего давление в верхней камере сбрасывают, клапан 5 под действием избыточного давления в рабочей камере запирает горловину, прекращая доступ абразива в рабочую камеру. Из бункера под действием силы тяжести очередная порция абразива через открывшийся клапан 4 поступает в верхнюю камеру – и процесс повторяется.

Цель и постановка задачи

Целью данной работы является выбор путей модернизации существующей установки, повышающих ее производительность.

В механическом цехе была установлена дробеструйная камера всасывающего типа, в процессе эксплуатации которой выявилось нарушение нормального функционирования, проявляющееся в прекращении подачи дроби в рабочую камеру через сопло при стабильном рабочем давлении воздуха в магистрали — 0,6 МПа.

Анализ рабочего процесса дробеструйного аппарата показал, что нарушение нормального функционирования происходит ввиду недостаточной подачи рабочего материала к соплу 3 (рис. 1) из-за большой протяженности дробепроводного шланга и большого перепада высот от места забора дроби до рабочего сопла. Кроме этого угол осыпания сборного бункера не обеспечивает стабильного пополнения дроби в месте установки насадка 6.

Пути модернизации и расчет параметров

Переоборудование такого аппарата в аппарат нагнетательного типа затруднительно, поэтому для устранения выявленных недостатков и увеличения производительности аппарата было предложено заменить штатное сопло (рис. 4) на эжекторный пистолет (рис. 5).

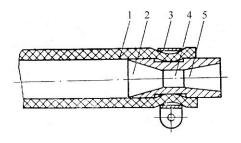


Рисунок 4 – Сопло дробеструйного аппарата:

1 – шланг; 2 – заходная часть; 3 – хомут; 4 – калибрующая часть; 5 – направляющая часть

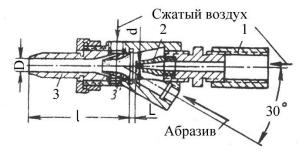


Рисунок 5 – Эжекторный пистолет: 1 – муфта; 2 – сопло; 3 – смеситель; 3 – дополнительный смеситель

При равных давлении, диаметре сопла и рабочем материале, производительность эжекторного пистолета и скорость потока значительно выше за счёт создания до-

полнительного разрежения в результате подвода потока вторичного воздуха на вход смесителя 3 (см. рис. 5).

Кроме этого для обеспечения бесперебойной подачи рабочего материала к эжекторному пистолету был установлен винтовой транспортер с регулируемым приводом и изменен угол осыпания бункера.

Схема модернизированной установки представлена на рис. 6.

Для выбора оптимальных параметров модернизированной установки (геометрических параметров эжекторного пистолета, производительности винтового транспортера и угла осыпания бункера) был выполнен следующий расчет, при заданных параметрах воздушной магистрали и дробепроводного шланга.

Условно принимаем, что абразивный материал (дробь) есть шарик, диаметром d и плотностью γ_T .

Объём шарика:

$$V = \frac{\pi d^3}{6},$$

а его масса:

$$G = \frac{\pi d^3}{6} \cdot \gamma_T$$
.

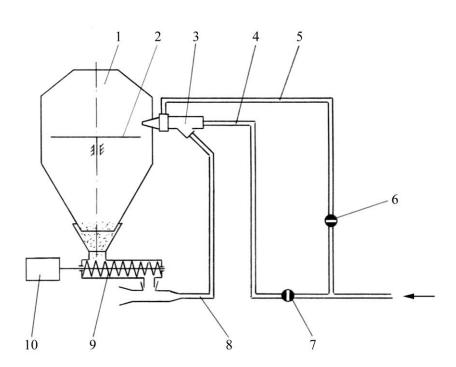


Рисунок 6 – Модернизированная дробеструйная установка:

1 – бункер; 2 – рабочий стол; 3 – эжекторный пистолет; 4, 5 – воздуховоды; 6, 7 – вентили; 8 – дробепроводный шланг; 9 – винтовой транспортер; 10 – привод транспортера

Аэродинамическая (подъемная) сила, действующая на шарик в вертикальном дробепроводном шланге, в соответствии с [3] будет равна:

$$T = kf \frac{(V - V_T)^2}{2g} \gamma ,$$

где k — коэффициент лобового сопротивления частицы; f — площадь проекции частицы на плоскость, перпендикулярную направлению воздушного потока; V — скорость обтекающего потока; V_T — скорость твёрдой частицы; γ — плотность воздуха; g — ускорение свободного падения.

Для твёрдой частицы шарообразной формы аэродинамическая сила будет равна:

$$\grave{O} = k \frac{\pi d^2}{4} \frac{(V - V_{\grave{O}})^2}{2g} \gamma.$$

Рассмотрим случай, когда $V_T = 0$, т.е. G = T.

$$\frac{\pi d^3}{6} \cdot \gamma_T = k \frac{\pi d^2}{4} \cdot \frac{V^2}{2g} \gamma,$$

откуда

$$V = 1.15 \sqrt{\frac{d\gamma_T \cdot g}{k\gamma}} \; .$$

Для тела шарообразной формы принимаем k = 0.23 [2], расчетная плотность воздуха

$$\gamma = 1.244 \cdot \xi$$
.

где $\xi = 0.75$ для всасывающих установок – коэффициент типа установки [2].

Таким образом, определена критическая скорость воздушного потока, необходимая для подъема твёрдой частицы.

Для обеспечения устойчивости транспортирования дроби необходимо выполнить условие:

$$V_{\rm p} = 0.5(V + V_{\rm K})$$

где V_P – средняя рабочая скорость воздушного потока; V_K – конечная скорость воздушного потока (зависит от дальности транспортирования и перепада высот).

Мы получили V_P для частицы, имея конкретный воздуховод установки и дробепроводный шланг. Можно определить необходимый расход воздуха для переноса одной частицы.

$$Q = V_P \cdot F_B,$$

где F_B – площадь сечения воздуховода, равная

$$F_{\rm B} = \frac{\pi d_{\phi}^2}{4}$$

где $d_{\text{ш}}$ – диаметр дробепроводного шланга. Следовательно

$$Q = V_P \frac{\pi d_{\phi}^2}{4} .$$

Установка запитана от воздушной магистрали с определенными давлением и расходом. Определяем расход абразивного материала в единицу времени

$$\dot{I} = \frac{Q_{\ddot{o}}}{O} \cdot G,$$

где M – расход абразивного материала; $Q_{\rm II}$ – расход воздушной системы; G – масса частицы.

Для определения геометрических параметров эжекторного пистолета воспользуемся теорией струйных аппаратов изложенной в [7]. В бездиффузорных струйных аппаратах соотношение площадей камеры смешения и рабочего сопла равно

$$\frac{F_D}{F_d} = \frac{P_P}{P_C} \cdot \frac{\left(1 + U \sqrt{\frac{T_H}{T_P}}\right)}{V_C},$$

где $F_D = \frac{\pi D^2}{4}$ — площадь сечения камеры смешения; $F_d = \frac{\pi d^2}{4}$ — площадь критического сечения рабочего сопла; P_P — рабочее давление; P_C — давление в камере смешения; $U = \frac{Q_H}{Q_P}$ — коэффициент инжекции; Q_H — массовый расход инжектируемого потока; Q_P — массовый расход рабочего потока; T_H — температура инжектируемой среды; T_P — температура рабочей среды; V_C — скорость потока в камере смешения (определяется по таблицам).

Площадь сечения рабочего сопла определяем из выражения

мическая функция (определяется по таблицам).

$$F_{d} = \frac{G_{P} \cdot a_{P}}{K_{P} \cdot \ddot{I}_{D^{*}} \cdot P_{P} \cdot q_{P}},$$

где G_P –массовый расход рабочего потока; $a_P = \sqrt{2\frac{K_P}{K_P+1}} \cdot \sqrt{P_P \cdot V_P}$ – критическая скорость рабочего потока; K_P – показатель адиабаты; V_P – удельный объем рабочей среды; $\ddot{I}_{E^*} = \left(\frac{2}{K_P+1}\right)^{\frac{K_P}{K_P-1}}$ – относительное давление для критического сечения; q – газодина-

Из приведенных зависимостей и с учетом экспериментальных данных (рис. 7) [5] определяем D и d.

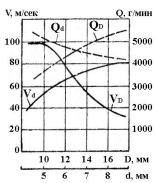


Рисунок 7 – Зависимость расхода и скорости дроби от D и d

Для бесперебойного пополнения винтового транспортера абразивным материалом определим необходимый угол осыпания бункера исходя из схемы, представленной на рис. 8.

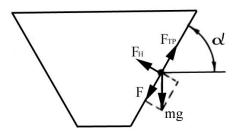


Рисунок 8 – Схема для определения угла осыпания бункера

Очевидно, что для гарантированного осыпания рабочего материала должно выполнятся условие

$$F > F_{TP}$$
.

где F – сила осыпания материала равная

$$F = m \cdot g \cdot \sin \alpha$$
,

а F_{TP} – сила трения абразивного материала о стенки бункера равная

$$F_{TP} = \mu F_H = \mu \cdot m \cdot g \cdot \cos \alpha$$
,

где μ – коэффициент трения рабочего материала о стенки бункера с учётом его увлажнения и слёживаемости; F_H – нормальная сила.

Исходя из необходимого количества рабочего материала, определяем параметры винтового транспортера.

Производительность винтового транспортера по [1] равна

$$Q_{\hat{I}} = \frac{\pi}{4} (D^2 - d^2) Sn\phi ,$$

где D — наружный диаметр шнека; d — диаметр вала; S — шаг винтовой линии; n — число оборотов в минуту; ϕ — коэффициент производительности.

Результаты модернизации

По результатам проведенных расчётов и макетирования были изготовлены: дополнительная секция с увеличенным углом осыпания рабочего материала, винтовой транспортер с возможностью регулирования оборотов для дозированной подачи рабочего материала и эжекторный пистолет с возможностью регулирования подачи вторичного воздуха путём изменения зазора L (рис. 5).

В результате этих мероприятий была полностью устранена возможность засорения дробепроводного шланга абразивным материалом. Функционирование дробеструйного аппарата стало бесперебойным и стабильным.

Произведенные замеры рабочих параметров показали высокую степень совпадения расчетных и рабочих параметров. Так при $d_{\rm COПЛ}=5$ мм, $P_{\rm PAB}=0.6$ МПа расчетная производительность модернизированной установки составила 0.03 кг/с, а замеренная -0.028 кг/с при максимальном разрежении. Расчетная производительность исходной установки составляла 0.02 кг/с, что \approx на 30 % ниже полученного результата.

Измерения производились при температуре окружающей среды равной 20 °C и атмосферном давлении 760 мм.рт.ст. Наличие возможности регулирования эжекторного сопла и подающего рабочий материал механизма, позволило компенсировать колебания давления в подающей магистрали без применения дополнительных средств стабилизации (воздушных редукторов и т.п.).

Вывод

Данный метод повышения производительности дробеструйного аппарата всасывающего типа может быть рекомендован для крупносерийного и массового производств, а также в местах с большой протяженностью дробепроводных путей.

Литература

- 1. Григорьев А.М. Винтовые конвейеры. М., Машиностроение. 1972. –184 с.
- 2. Вайнсон А.А. Подъемно-транспортные машины. М, Машиностроение. 1974. –431с.
 - 3. Калинушкин М.П. Пылесосные установки. М., Стройиздат. 1964. –116 с.
- 4. Идельчик И.Е. Справочник по гидравлическим сопротивлениям. М. Л., Госэнергоиздат. 1975. –568 с.
- 5. Пичко А.С. Дробеструйные эжекторные пистолеты. Литейное производство. №3, 1966. с. 16-18.
 - 6. Пичко А.С. Струйно-абразивная обработка. М., НИИМАШ, 1968. –31с.
 - 7. Соколов Е.Я., Зингер Н.М. Струйные аппараты. М., Энергия. 1970. 288 с.

УДК 621.924.95

Воронін С.Є., Долгополов В.Г., Костенко І.В., Курцев С.М., Скріпкін М.Р., Федянін О.В.

ПРО ЗБІЛЬШЕННЯ ПРОДУКТИВНОСТІ ДРОБЄСТРУМІННОЙ КАМЕРИ ВСМОКТУЮЧОГО ТИПУ

У статті здійснено розрахунок подачі абразивного матеріалу для дробєструмінной камери всмоктуючого типу та запропонована схема її модернізації.