УДК 621.224

З. Я. ЛУРЬЕ, А. И. ГАСЮК, В. А. БУЛГАКОВ, Л. Н. ЦЕХМИСТРО, Е. Н. ЦЕНТА

СИНТЕЗ МЕХАТРОННОГО ГИДРОПРИВОДА РАБОЧЕГО КОЛЕСА ГИДРОТУРБИНЫ

Исследуется рабочий процесс мехатронного гидропривода рабочего колеса на основе усовершенствованной математической модели. Улучшение показателей качества динамических характеристик обеспечено вводом в устройство управления двух ПИД-регуляторов с дифференциальным изодромным каналом настройки. Отработка малых перемещений поршня сервомотора (малых углов поворота лопастей) с достаточной для практики точностью достигнута путем постановки и решения задачи динамического синтеза корректирующего устройства. Значения синтезированной кривой вводятся в программное обеспечение компьютерной системы и в процессе работы поступают в пропорциональный канал ПИД, превращая его в корректирующее устройство. При этом одновременно достигнута инвариантность рабочего процесса, в том числе в режиме малых углов поворота лопастей, относительно вредного влияния увеличения газосодержания в двухфазной рабочей жидкости до 15 %.

Ключевые слова: математическая модель, мехатронный гидропривод, рабочее колесо, ПИД-регулятор, поворотнолопастная гидротурбина, корректирующее устройство, оптимизация, синтез.

Введение. В мировой и отечественной практике создания гидротурбинного оборудования в части управления определилась тенденция по пути внедрения более совершенных гидроустройств, средств вычислительной техники, включая ЭВМ. Такое развитие направлено на обеспечение возрастающих требований к техническому уровню и к эксплуатации гидротурбин. Появилась возможность разрабатывать мехатронные системы с улучшенными динамическими характеристиками.

Анализ литературных источников. В работе [1] излагается методика расчета динамических характеристик систем управления гидротурбинами на основе математической модели (далее MM), представленной линеаризованными уравнениями в приращениях. Точность расчета такого подхода определяется выбранной точкой линеаризации и величиной приращения. Авторы отмечают, что при оценке устойчивости можно пользоваться такой моделью. Однако с появлением компьютерных систем линеаризованная ММ может служить лишь для предварительных расчетов.

Работа [2] посвящена изложению основ динамики линейных и линеаризованных систем. Изложены методы расчета устойчивости, выбора параметров и структуры регуляторов скорости гидротурбин и др. Невзирая на подавляющее использование теории линейных систем, работа [2] и сегодня имеет теоретическую и практическую значимость.

В работе [3] кратко описана первая в Украине компьютерная система при реконструкции поворотнолопастной гидротурбины (далее ПЛГ) Кременчугской ГЭС Днепровского каскада, разработанная консорциумом «Регулятор» (Украина, Харьков) совместно с фирмой ALSTOM POWER HYDRO (Франция, Гренобль).

В работе [4] изложен анализ систем управления гидротурбиной от гидромеханических до современных компьютерных. Приведены функциональная схема первой компьютерной системы и структура ее программного обеспечения, из которой видно управление рабочим колесом (далее РК).

В работах [4–6] изложены результаты моделирования и исследования первой компьютерной системы управления ПЛГ. Однако в них не уделено

должного внимания исследованию динамики рабочего процесса гидропривода РК.

Работа [7] посвящена обсуждению динамики рабочих процессов отдельных элементов, узлов и в целом гидропривода РК как мехатронного (далее МГП РК). В модели сила сопротивления движению СМ принята условной константой, не отражающей физическую сущность реальной гидродинамической силы и силы трения в механизме поворота лопастей.

Постановка задачи. Результаты анализа последних публикаций показали, что обеспечение современных высоких технических требований к рабочему процессу МГП РК для поворота лопастей ПЛГ. его улучшению продолжает оставаться актуальной задачей. Ее решение связано не только с улучшением технических характеристик электро- и гидрооборудования, но И с существенным пересмотром формирования законов в устройствах управления, входящих в состав МГП, на базе достижений теории автоматического управления, методов синтеза, оптимизации и вычислительной техники.

Рассмотрим расчетную схему МГП РК (рис. 1). Она содержит только три гидроустройства (в отличие от прежних ГП): ЭГП – электрогидропреобразователь для преобразования входного электрического сигнала, соответствующего значениям комбинаторной зависимости в данный момент времени, в гидравлический; РЗ гидрораспределитель золотникового типа c гидроуправлением, обеспечивающий расход и слив рабочей жидкости (далее РЖ) из поршневой и штоковой полостей третьего гидроустройства сервомотора (далее СМ); СМ осуществляет через устройство кинематики разворот и сворачивание лопастей РК. МГП РК оснащен измерительными, аналого-цифровыми И цифро-аналоговыми устройствами о фактическом положении золотников ЭГП и РЗ, поршня СМ, контроля давления РЖ в различных точках для подачи информации в компьютер. Программное обеспечение формирует управляющий сигнал комбинаторной зависимости, поддержание обеспечивающий работы ПЛГ в оптимальном режиме при изменении напора и мощности.

Рис. 1 – Расчетная схема гидропривода рабочего колеса:

МНУ – маслонапорная установка; РЗ – гидрораспределитель; СМ – сервомотор; ЭГП – электрогидравлический преобразователь; Б – гидробак; ИПрз, ИПсм – измерительные преобразователи соответственно РЗ и СМ; РК – рабочее колесо; Uк – электрическое напряжение комбинаторной зависимости

Усовершенствованная нелинейная ММ динамики МГП РК с учетом нелинейностей гидроустройств, переменностей коэффициентов расходов в функции числа Рейнольдса, приведенных модулей упругости двухфазной РЖ и др. представлена системой из 10-ти дифференциальных уравнений первого порядка (из которых 6 – нелинейные) в нормальной форме Коши [7].

Обеспечение режима малых поворотов лопастей (перемещений поршня СМ) путем введения более эффективных законов управления еще не полностью отвечает возросшим требованиям и продолжает оставаться актуальной задачей.

Решение. Помимо расчетной схемы остановимся функциональной схеме МГП РК (рис. 2) с на обозначением соответствующих сигналов И параметров. Здесь U_K – электрический сигнал комбинаторной зависимости, который является задающим для МГП РК; Uє – сигнал рассогласования, подаваемый на обмотку электрогидравлического преобразователя (ЭГП); x_{\Im} – перемещение золотника ЭГП; ОС1, ОС2 - сигналы обратных отрицательных связей соответственно по перемещению золотника гидрораспределителя (*x*_{P3}) и по перемещению поршня сервомотора РК (х_{см}). Причем ОС₁ формирует внутреннюю обратную связь, а ОС2 – внешнюю (главную) обратную связь МГП РК.

Из рис. 2 четко видна двухконтурность МГП РК. Внутренним контуром является узел «ЭГП – золотник РЗ», охваченный обратной отрицательной связью по положению x_{P3} золотника РЗ. Входом внутреннего контура служит сигнал Uє, выходом – перемещение x_{P3} золотника РЗ. Внешний контур охватывает весь МГП РК, т.е. все устройства. Входом внешнего контура является сигнал U_{K} , который задает положение поршня СМ (угол разворота лопастей РК), а выходом – фактическое положение поршня СМ (фактический угол поворота лопастей РК).

Рис. 2 – Функциональная схема МГП РК

Уделим внимание двум переменным MM, которые не получили должного внимания. В работе [8] предложена формула для определения хода поршня СМ при развороте лопасти от угла φ_1 (начальный угол) до угла φ_2 (максимальный угол) для кривошипношатунного механизма поворота лопастей осевой ПЛГ.

При соответствующем преобразовании этой формулы можно получить зависимость $x_{CM}(\varphi)$:

$$x_{\rm CM}(\varphi) = l_{\rm P}\left(\sin\varphi - \sin\varphi_{\rm I}\right) + l_{\rm C}\left[\sqrt{1 - \left(\frac{l_{\rm P}}{l_{\rm C}}\cos\varphi - \frac{L}{l_{\rm C}}\right)^2} - \sqrt{1 - \left(\frac{l_{\rm P}}{l_{\rm C}}\cos\varphi_{\rm I} - \frac{L}{l_{\rm C}}\right)^2}\right], \ \varphi_{\rm I} \le \varphi \le \varphi_{\rm 2}, \quad (1)$$

где $l_{\rm P}$ — длина рычага, $l_{\rm C}$ — длина серьги, L — расстояние между осями гидротурбины и сервомотора.

На рис. З показаны зависимости $x_{\rm CM}(\varphi)$ и $\varphi(x_{\rm CM})$ для рабочего колеса ПЛ661 гидротурбины Кременчугской ГЭС при значениях $l_{\rm P} = 650$ мм,

 $l_{\rm C} = 985 \text{ мм}$, L = 780 мм, $\varphi_1 = -14^{\circ}$, $\varphi_2 = 23^{\circ}$. Визуально они близки к линейным (при увеличении масштаба отклонения видны).

Остановимся на вопросе, связанном с определением силы сопротивления движению штока СМ, существенно влияющей на динамику МГП РК. При построении ММ было принято максимальное значение [7]. Этот вопрос в одинаковой степени важен при проектировании и исследованиях как РК, так и СМ. Для определения силы сопротивления $F_{\rm CCM}$ движению поршня СМ с кривошипно-шатунным механизмом поворота лопастей воспользуемся расчетной формулой работ [8, 9]:

$$F_{\rm C.CM} = 1,1 \frac{\pm M_{\Gamma} + A_0}{(r \pm A_1)\cos(\varphi_0 + \alpha)} z, \qquad (2)$$

где $r = l_{\rm p}$; M_{Γ} – момент гидродинамических и центробежных сил лопасти относительно ее оси поворота при номинальной частоте вращения ротора ПЛГ (определяется экспериментально); $A_0 = A_2 \cdot F_Z + A_3 \cdot G - A_4 \cdot C$ – одна из составляющих момента трения цапфы лопасти; A_2 , A_3 , A_4 – коэффициенты; A_1 – коэффициент, входящий в формулу момента трения цапфы лопасти; F_Z , G, C – соответственно осевое усилие на одну лопасть, вес лопасти с цапфой, рычагом и серьгой, центробежная

сила на одну лопасть; φ_0 – максимальный угол поворота рычага от среднего положения (при развороте лопасти со знаком «+», при сворачивании – со знаком «-»); α – угол наклона серьги; z – число лопастей. Здесь верхний знак соответствует движению поршня вниз на разворот лопастей, нижний – на сворачивание лопастей.

На рис. 4 в качестве примера показаны кривые силы сопротивления $F_{\text{C.CM}}$ для РК ПЛГ с $D_1 = 9,3$ м при H = 14 м [9].

Нижняя кривая отражает изменение силы $F_{\rm C.CM}$ от 182,5 до 3360 кН при развороте лопастей (в интервале (-12^0 , $+14^0$)) и перемещении штока СМ от нуля до 410 мм. Верхняя кривая характеризует изменение силы $F_{\rm C.CM}$ от 5730 до 8650 кН при сворачивании лопастей ($+14^0$, -12^0) и перемещении штока СМ от положения 410 мм до нуля.

Рис. 4 – Кривая силы сопротивления движению поршня СМ: нижняя ветвь соответствует развороту лопастей; верхняя – сворачиванию лопастей

Перейдем к исследованию динамики. Для этого к ММ исследуемого МГП добавляется ММ устройства управления, апробированная при предварительных исследованиях как отдельных узлов, так и МГП в целом (представлена на рис. 5 диаграммой вычислительных блоков пакета VisSim).

U_K – электрическое напряжение на выходе комбинаторного устройства как задающее воздействие на поворот лопасти; U_{CM} – электрическое напряжение, соответствующее фактическому положению лопасти; Ue – величина рассогласования; x_{P3}, x_{CM} – фактическое положение золотника P3 и поршня CM; Koc.cм, Koc.p3 – коэффициенты обратных связей соответственно по перемещению штока CM и перемещению золотника P3; _____, ▶ _____, ▶ ______ рs1 – блоки, выполняющие функции переключения модели с разворачивания лопастей на сворачивание и ограничения сигнала на выходе ПИД-регуляторов с изодромным дифференцирующим каналом настройки

ПИД-регуляторы (для внутреннего и внешнего контуров) с дифференцирующими изодромными каналами введены в устройство управления для

улучшения показателей качества переходных процессов и решения вопросов устойчивости.

На рис. 6 показаны осциллограммы 4-х переменных из 15-ти при отработке максимального задающего воздействия. На первом этапе переходного процесса поршень СМ прошел путь равный 410 мм, а лопасти повернулись из начального положения на угол 37⁰.

Рис. 6 – Переходные процессы давления в поршневой полости $p_n(t)$, скорости поршня $v_{CM}(t)$, перемещения поршня $x_{CM}(t)$ и силы сопротивления $F_{C,CM}(t)$ при максимальном задающем воздействии $U_K = 10$ B, $m_0 = 0,025$, $K_{\Pi} = 20$

Анализ переходных процессов (рис. 6) подтверждает нормальное функционирование МГП при максимальном задающем воздействии $U_{\rm K} = 10$ В (это соответствует перемещению $x_{\rm CM} = 410$ мм). Давление РЖ в поршневой полости СМ отражает характер изменения силы сопротивления на поршне СМ и ее существенное увеличение на участке сворачивания лопастей.

Объемный модуль упругости двухфазной РЖ в соответствующих уравнениях гидроустройств (гидроаппаратах) определялся по формуле, предложенной Прокофьевым В. Н. и Лузановой И. А. [10], и имеет вид:

$$E_{\mathfrak{K}_{i}} = K(p_{j} + 10^{5})(Ap_{j} + B) \times \frac{(1 - m_{0})D_{1} + m_{0}D_{2}}{K(p_{j} + 10^{5})(1 - m_{0})D_{1} + m_{0}(Ap_{j} + B)D_{2}},$$
(3)

где *i*, *j* – гидроустройства МГП (ЭГП, ГР и др.);

$$D_1 = \sqrt[A]{\frac{Ap_0 + B}{Ap_j + B}}, \ D_2 = \sqrt[K]{\frac{p_0 + 10^5}{p_j + 10^5}}.$$

Здесь K – показатель политропы; A, B – параметры РЖ, зависящие от типа РЖ и рабочей температуры системы; m_0 – содержание нерастворенного воздуха в РЖ в относительных единицах, %; p_0 – начальное давление РЖ; p_j – давление РЖ (в трубопроводах, в полостях гидроустройств).

Однако при меньших заданиях $U_{\rm K}$ параметр $K_{\Pi} = 20$ не обеспечивает точность прихода поршня СМ в заданную позицию (статическую точность), и существенно так же снижает быстродействие по сравнению с максимальным заданием. Важным требованием к МГП РК является обеспечение малых перемещений штока СМ (малых углов поворота лопастей), при которых фактические положения штока СМ от заданных значений не должны превышать величину $\Delta = \pm 0,75$ мм. В режиме малых перемещений МГП РК работает значительную часть времени, обеспечивая поддержание работы ПЛГ в оптимальном режиме при изменении напора и мощности.

Если закон управления построен с постоянным коэффициентом (в данном случае 20) усиления величины

рассогласования, то при заданиях перемещения штока СМ (поворота лопастей) 80 мм (19,5 % максимального) и меньше, величина Δ существенно превышает ±0,75 мм. Решение этой задачи возможно на основе синтеза корректирующего устройства (КУ) и ввода его с состав МГП. Процесс синтеза выполняется следующим образом. Для каждого заданного і-го перемещения $x_{3CMi}(t)$ (или $U_{Ki} = x_{3CMi} \cdot K_{OC.CM}$) с помощью всей ММ МГП РК решается оптимизационная задача поиска такого значения коэффициента усиления К_П (предполагается использовать в качестве КУ пропорциональный канал ПИД), при котором минимум следующему доставляется критерию оптимизации:

$$\varepsilon_i = |x_{3CMi} - x_{CMi}| \rightarrow \min$$

при *i* = 4,1; 8,2; 12,3; 16,4; … 80 мм.

Следовательно, є_i является модулем величины разности заданного значения положения СМ и значения моделируемого положения СМ на участке установившегося движения. Оптимизация выполнялась вручную методом проб и ошибок, в результате которой получена совокупность точек. С помощью нелинейного блока VisSim и процессов интерполяции и экстраполяции она превращена в нелинейную кривую.

На рис. 7 изображена, полученная синтезированная нелинейная зависимость, как кривая изменения коэффициента усиления рассогласования *U*e.

Рис. 7 – Кривая $K_{\Pi}(\Delta X e)$, полученная в результате синтеза

абсцисс отложены $\Delta X e$ По оси значения требуемого положения штока СМ (угла поворота лопасти), как управляющие входные сигналы на МГП. На оси ординат показаны значения коэффициентов усиления K_{Π} , соответствующих значениям $\Delta X e$. Большим значениям коэффициента усиления соответствуют очень малые заданные значения перемещений (1-4 % от максимального 410 мм). Коэффициент усиления резко уменьшается при возрастании ΔXe и, начиная с $\Delta Xe = 80$ мм (19,5 % от максимального перемещения) до $\Delta Xe = 410 \text{ MM}$ практически остается неизменным.

На рис. 8 показаны кривые перемещения $x_{\rm CM}$ при отработке с синтезируемым КУ задания с включением в конце дополнительного сигнала в 1 % при максимальном газосодержании $m_0 = 0,15$ без обратной связи по скорости $v_{\rm CM}$ (рис. 8, *a*) и с обратной связью (рис. 8, *б*).

Рис. 8 – Влияние обратной отрицательной связи по скорости поршня СМ на компенсацию колебаний в зоне рассогласования близкого к нулю при задании $U_{\rm K}$ = 9,8 В ($x_{\rm CM}$ = 401,8 мм, φ = 22,24°, m_0 = 0,15) и при включении дополнительного 1 % сигнала: a – без обратной связи; δ – с обратной связью

Теперь колебания в конце отработки заданного сигнала отсутствуют, четко видно дополнительное перемещение СМ на заданный 1 % с необходимой точностью. Такие же результаты получены при $U_{\rm K} = 5$ В ($x_{\rm CM} = 205$ мм, $\varphi = 4,87^{\circ}$) и $U_{\rm K} = 2,5$ В ($x_{\rm CM} = 100,25$ мм, $\varphi = -4,38^{\circ}$) (на рис. 8 не показаны).

Рассмотрим динамические характеристики для трех малых перемещений при $m_0 = 0,025$ и исходном $x_{\rm CM} = 0$: 4,1 мм (1 % максимального перемещения $x_{\rm CM,MAX} = 410$ мм), 8,2 мм (2 %) и 12,3 мм (3 %), которые показаны на рис. 9, a - 9, e.

Для каждой кривой определено значение критерия ε , которое существенно меньше допустимого (значение критерия ε приведены в подписях к рис. 9,*a* – 9,*e*).

Оценим влияние двухфазной РЖ на рабочий процесс МГП РК в режиме малых перемещений на примере заданного перемещения $x_{3CM} = 12,3$ мм (3 % от $x_{CM.MAX} = 410$ мм) (рис. 10). Кривая рис. 10, *а* получена при газосодержании $m_0 = 0,075$, кривая рис. 10, δ – при $m_0 = 0,01$, а кривая рис. 10, ϵ – при $m_0 = 0,12$. При $x_{3CM} = 12,3$ мм и $m_0 = 0,025$ кривая показана на рис. 10, ϵ .

Совместный анализ кривых показывает: при $m_0 = 0,025$ (рис. 9, e) выход на установившееся движение осуществляется без колебаний за время 2,5 с; при $m_0 = 0,075$ (рис. 10, a) процесс не колебательный, но и не монотонный; при $m_0 = 0,1$ (рис. 10, δ) появляется одно колебание с выходом на установившееся движение; при $m_0 = 0,12$ (рис. 10, e) движение становится затухающим колебательным с выходом на установившееся движение монотонным с выходом на установившееся движение через 5,2 с. Дальнейшее увеличение m_0 вызывает незатухающие колебания (на рис. 10 эта кривая не показана).

Причиной, приводящей к колебательному процессу при отработке малых перемещений (относительно нулевого начала) с ростом m_0 (помимо большого значения K_{Π}) является малая нагрузка в начале разворота лопастей (сила $F_{\rm C.CM}$).

а – при 0,075; *б* – при 0,1; *в* – при 0,12

Выводы. 1. Знание близкой к реальности силы сопротивления движению поршня сервомотора повышает адекватность моделирования МГП РК натурным испытаниям. Расчеты потребного усилия

сервомотора при проектировании гидротурбины и ее рабочего колеса могут быть применены для этой цели.

2. Выполненное исследование динамики МГП РК в целом, как двухконтурной системы, показало необходимость ввода в цепь управления двух ПИДрегуляторов с изодромным дифференцирующим каналом с целью обеспечения требуемых динамических характеристик разворота и сворачивания лопастей на максимальный угол, различный для разных рабочих колес.

3. Вопрос отработки малых перемещений сервомотором (поворота лопастей на малый угол), при отклонений работы турбины от оптимального режима из-за изменений напора или мощности решен на основе синтеза корректирующего устройства, входящего в состав мехатронного ГП РК.

Список литературы: 1. Умов В. А. Расчет динамических характеристик гидравлических агрегатов / В. А. Умов, И. Н. Филатов. – Л.: ЛПИ, 1977. - 60 с. 2. Пивоваров В. А. Проектирование и расчет систем регулирования / В. А. Пивоваров. – Л. : Машиностроение, 1972. – 288 с. 3. Жерняк А. И. Компьютерная система регулирования скорости гидротурбины / А. И. Жерняк, З. Я. Лурье, В. Н. Дмитерко // Вестник НТУ «ХПИ». Технологии в машиностроении. - 2001. - № 7. С. 90-92. 4. Лурье З. Я. Система управления частотой вращения ротора гидротурбины, пути ее развития / З. Я. Лурье, В. Н. Бездетко, В. Н. Дмитерко [и др.] // Проблемы машиностроения. - 2003. - Т. 6, № 2. – С. 26–36. 5. Лурье З. Я. Динамические характеристики узла «электрогидравлический преобразователь - золотник гидрораспределителя системы регулирования гидротурбины» / З. Я. Лурье, В. Н. Дмитерко // Вестник НТУ «ХПИ». – 2002. – Т. 2, № 6. – С. 82–87. 6. Лурье З. Я. Динамика комплекса гидроустройств в составе системы автоматического управления и регулирования частотой вращения ротора гидротурбины / З. Я. Лурье, В. А. Булгаков, В. Н. Дмитерко // Вестник НТУ «ХПИ». – 2004. – № 12. – С. 13–22. 7. Лурье З. Я. Динамика мехатронного гидропривода рабочего колеса поворотнолопастной гидротурбины / З. Я. Лурье, Э. Г. Братута, А. И. Гасюк [и др.] // Праці Таврійського державного агротехнологічного університету. - Мелітополь : ТДАТУ, 2014. - Т. 3, вип. 14. - С. 59-73. 8. Ковалев Н. Н. Справочник конструктора гидротурбин Н. Н. Ковалев. – Машиностроение, 1971. -304 c. Л.: 9. Ковалев Н. Н. Гидротурбины / Н. Н. Ковалев [и др.]. – Л. : Машиностроение, 1971. -583 c. 10. Прокофьев В. Н. Экспериментальное исследование упругих свойств двухфазных рабочих жидкостей гидроприводов объемного типа / В. Н. Прокофьев, И.А. Лузанова, Ж.Б. Емченко [и др.] // Известия ВУЗов. Машиностроение. - 1968. - № 2. - С. 87-93.

Bibliography (transliterated): 1. Umov, V. A., and I. N. Filatov Raschet dinamicheskikh kharakteristik gidravlicheskikh agregatov. Leningrad : LPI, 1977. Print. 2. Pivovarov, V. A. Proektirovanie i raschet sistem regulirovanija. Lenigrad : Mashinostroyeniye, 1972. Print. 3. Zhernjak, A. I., Z. Ja. Lurye and V. N. Dmiterko. "Komp'juternaja sistema regulirovanija skorosti gidroturbiny." Vestnik NTU «KhPI». Tehnologii v mashinostroenii. No 7. 2001. 90-92. Print. 4. Lurye, Z. Ja., et al. "Sistema upravlenija chastotoj vrashchenija rotora gidroturbiny, puti ee razvitija." Problemy mashinostroenija. No. 6.2. 2003. 26-36. Print. 5. Lurye, Z. Ja., and V. N. Dmiterko. "Dinamicheskie kharakteristiki uzla «elektrogidravlicheskij preobrazovatel - zolotnik gidroraspredelitelja» sistemy regulirovanija gidroturbiny." Vestnik NTU «KhPI». No. 2.6. 2002. 82-87. Print. 6. Lurye, Z. Ja., V. A. Bulgakov and V. N. Dmiterko. "Dinamika kompleksa gidroustrojstv v sostave sistemy avtomaticheskogo upravlenija i regulirovanija chastotoj vrashchenija rotora gidroturbiny." Vestnik NTU «KhPI». No. 12. 2004. 13-22. Print. 7. Lurye, Z. Ja., et al. "Dinamika mekhatronnogo gidroprivoda rabochego kolesa povorotnolopastnoj gidroturbiny." Pratsi Tavrivskogo derzhavnogo agrotekhnologichnogo universitetu. Melitopol : TDATU, 2014. No. 3.14. 59-73. Print. 8. Kovalev, N. N. Spravochnik konstruktora gidroturbin. Leningrad : Mashinostroenie, 1971. Print. **9**. Kovalev, N. N., et al. *Gidroturbiny*. Leningrad : Mashinostroenie, 1971. Print. **10**. Prokofev, V. N., et al. "Eksperimentalnoe issledovanie uprugih svojstv dvuhfaznyh rabochih zhidkostej gidroprivodov ob#emnogo tipa." Izvestiya VUZov. Mashinostroenie. No 2. 1968. 87-93. Print.

Поступила (received) 20.02.2015

Відомості про авторів / Сведения об авторах / About the Authors

Лурье Зиновий Яковлевич – доктор технических наук, профессор, Национальный технический университет «Харьковский политехнический институт», профессор кафедры «Гидравлические машины», г. Харьков; тел.: (057) 707-66-46.

Lurye Zinoviy Yakovlevich – Doctor of Technical Sciences, Full Professor, National Technical University "Kharkiv Polytechnic Institute", Professor of the Department "Hydraulic machines", Kharkov; tel.: (057) 707-66-46.

Гасюк Александр Иванович – кандидат технических наук, доцент, Национальный технический университет «Харьковский политехнический институт», доцент кафедры «Гидравлические машины», г. Харьков; тел.: (057) 707-66-46.

Gasyuk Aleksandr Ivanovich – Candidate of Technical Sciences (Ph. D.), Docent, National Technical University "Kharkiv Polytechnic Institute", Associate Professor of the Department "Hydraulic machines", tel.: (057) 707-66-46.

Булгаков Владимир Александрович – кандидат технических наук, доцент, Национальный технический университет «Харьковский политехнический институт», доцент кафедры «Гидравлические машины», г. Харьков; тел.: (057) 707-66-46.

Bulgakov Vladimir Aleksandrovich – Candidate of Technical Sciences (Ph. D.), Docent, National Technical University "Kharkiv Polytechnic Institute", Associate Professor of the Department "Hydraulic machines", Kharkov; tel.: (057) 707-66-46.

Цехмистро Людмила Николаевна – кандидат философских наук, доцент, Национальный технический университет «Харьковский политехнический институт», доцент кафедры «Гидравлические машины», г. Харьков; тел.: (057) 707-66-46.

Tsekhmistro Lyudmila Nikolayevna – Candidate of Philosophical Sciences, Docent, National Technical University "Kharkiv Polytechnic Institute", Associate Professor of the Department "Hydraulic machines", Kharkov; tel.: (057) 707-66-46.

Цента Евгений Николаевич – кандидат технических наук, ассистент, Национальный технический университет «Харьковский политехнический институт», ассистент кафедры «Гидравлические машины», г. Харьков; тел.: (057) 707-66-46; e-mail: UG_1982@mail.ru.

Tsenta Evgeniy Nikolayevich – Candidate of Technical Sciences (Ph. D.), Assistant, National Technical University "Kharkiv Polytechnic Institute", Assistant of the Department "Hydraulic machines", Kharkov; tel.: (057) 707-66-46; e-mail: UG_1982@mail.ru.