Р.Л.ОНАЦКИЙ, ОАО «УкрНИИхиммаш», Харьков

ОСТАТОЧНЫЕ НАПРЯЖЕНИЯ В СОСУДАХ С ВМЯТИНАМИ И СНЯТИЕ ИХ В ПРОЦЕССЕ ГИДРООБРАБОТКИ

В статті проведено аналіз залишкових напружень в посудинах з вм'ятинами, навантажених внутрішнім тиском висококорозійних середовищ. Розглянуто процес утворення вм'ятини та зниження, отриманих при цьому залишкових напружень у процесі гідро обробки посудини. Аналіз проведено на основі методу скінченних елементів, з урахуванням фізичної та геометричної нелінійності

In the paper, analyzed remaining stresses of the vessel with dents, what loaded internal pressure with high corrosion ambience. The examined process of the forming the dent and removing remaining stress in progress of hydro-processing the vessel. Problem analyzed on base of the finite elements method, with provision for physical and geometric nonlinear.

В статье проведен анализ остаточных напряжений в сосудах с вмятинами, нагруженных внутренним давлением высококоррозионных сред. Рассмотрен процесс образования вмятины и снятие полученных остаточных напряжений в процессе гидрообработки сосуда. Решение выполнено на основе метода конечных элементов, с учетом физической и геометрической нелинейности.

Вмятина является распространенным геометрическим дефектом технологического оборудования, эксплуатируемого на химических и нефтеперерабатывающих производствах. Это оборудование в основном представляет собой сварные конструкции оболочкового типа, нагруженные внутренним давлением. Оборудование во время эксплуатации интенсивно подвергается воздействию высококоррозионных сред. Поскольку рабочие среды на отмеченных производствах являются пожаро и взрывоопасными, то к эксплуатации аппаратуры, содержащей разного рода дефекты, оказываются повышенные требования к прочности и надежности.

В сварных сосудах с вмятинами наблюдается неоднородное напряженно-деформированное состояние (НДС), характеризующееся высоким уровнем остаточных напряжений. Как было показано [1], высокий уровень остаточных растягивающих напряжений вызывает повышенный коррозионный износ элементов технологического оборудования, что приводит к снижению несущей способности аппарата.

Наиболее действенным методом снижения остаточных напряжений является термообработка сварных конструкций, однако не всегда она применима. В случае с оборудованием, габариты которого не позволяют применять термообработку, возможно применение гидрообработки. [2]

Под гидрообработкой следует понимать процесс воздействия водной среды, находящейся под изменяющимся давлением, на корпуса сосудов, аппаратов и стенки трубопроводов с измерением возникающих при этом деформаций.

Целью данной работы является исследование остаточных напряжений в области вмятины и изменение их уровня в процессе гидрообработки сосуда.

Проведенный анализ более тридцати аппаратов с вмятинами показал, что, в среднем, глубина вмятины находится в пределах от 1 до 2 толщин. Вмятины в основном бывают круглыми и эллиптическими в плане. Исходя из этого в качестве примера был выбран типовой сосуд (см. рис. 1), с геометрическими параметрами обечайки $\gamma = D/2h = 100$.

Рисунок 1 - Сосуд с вмятиной

Диаметр аппарата D = 3000 мм, толщина стенки h = 15 мм, длина сосуда 7500 мм. Температура стенки 20 °C, материал сталь Ст3. Предел текучести $\sigma_{\rm T}$ = 250 МПа, предел прочности $\sigma_{\rm B}$ = 460 МПа, модуль упругости E = 2·10⁵ МПа, модуль упрочнения E_T = 840 МПа, деформации при разрыве образца δ = 0,25. Нормативные допускаемые напряжения [σ] = 166 МПа [3]. Вмятина: глубина S = 30 мм (2h), длина с = 1900 мм и ширина b = 650 мм. (см. рис. 3)

В настоящей работе для оценки НДС в области вмятины проведены численные исследования на основе метода конечных элементов (МКЭ). Рассмотрен процесс образования вмятины под воздействием индентора, разгрузка и последующее нагружение сосуда внутренним давлением.

Внутреннее давление прикладывалось поэтапно с разгрузкой после каждого шага нагружения. На первом этапе деформированная конструкция (оболочка с вмятиной) была нагружена допускаемым [3] давлением, на втором – предельным давлением, вычисленным по следующей формуле:

$$P_e = \sigma_{\rm T} \frac{4h}{\sqrt{3}D}$$

Последующее нагружение перегрузочным давлением P_{π} с приращением на 1 % от величины 1,01P_e до 1,05 P_e.

Задача решена в физически и геометрически нелинейной постановке. Физические свойства материала определяются теорией малых упругопластических деформаций с билинейным, кинематическим упрочнением.

При решении задачи мы рассматривали только цилиндрическую обечайку. Геометрическая модель обечайки показана на рис. 2, и представляет собой (цилиндрическую оболочку) диаметром D = 3000 мм, толщиной h = 15 мм и длиной L = 7500 мм.

Рисунок 2 – Геометрическая модель

Рисунок 3 – Радиальные перемещения (мм) после снятия штампа

Выполнен учет симметрии – рассмотрена четверть оболочки, при этом со стороны отброшенных частей приложены соответствующие ограничения. При нагружении внутренним давлением со стороны отброшенных днищ прикладывались растягивающие усилия.

В качестве индентора взят цилиндрический штамп с диаметром $D_i = 600$ мм (см. рис. 2), ось которого перпендикулярна к образующей обечайки. Для решения задачи использовались объемные 20-ти узловые конечные элементы (КЭ) с тремя степенями свободы (Ux, Uy, Uz) в каждом узле [4]. Выбор объемных КЭ основан на том, что на этапе образования вмятины в зоне вдавливания штампа возникает объемное напряженно-деформированное состояние. При формировании вмятины решалась контактная задача, и были использованы, соответствующие контактные конечные элементы, моделирующие «жестко-податливый» контакт.[4]

При выполнении расчета использовалась неоднородная конечноэлементная сетка, показанная на рис. 2, со сгущением к центру вмятины. Для выбора размера КЭ выполнена серия расчетов направленная на оценку сходимости решения по числу КЭ.

Результаты расчета обечайки представлены в таблице, где приведены нормальные напряжения: окружные (σ_{ϕ}) и осевые (σ_z) на внутренней и наружной поверхностях оболочки, в двух характерных точках (рис. 1, I – центр вмятины, II – точка перегиба в окружном направлении). Приведены также, максимальные значения интенсивности напряжений (σ_i^{max}) и деформаций (ε_i^{max}), а также, перемещения в центре вмятины и вне вмятой зоны обечайки на разных стадиях нагружения (U_v).

Распределение радиальных перемещений после снятия штампа приведено на рис. 3. На рис. 4-7 приведены значения интенсивности напряжений на основных этапах нагружения. На рис. 8 приведены радиальные перемещения в центре вмятины и в неповрежденной цилиндрической области при рассмотренных стадиях нагружения.

Рисунок 4 – Напряжения σ_i (МПа). Максимум вдавливания штампа

Рисунок 5 – Напряжения о_і (МПа) после извлечения штампа

Из приведенных данных видно, что НДС в зоне вмятины существенного отличается от такового вне вмятой части сосуда. На этапе максимального вдавливания штампа максимум интенсивности напряжений (281 МПа), находится в области вмятины и превышает предел текучести (на 12 %), хотя эти напряжения выше допускаемых общих, однако они остаются ниже допускаемых местных напряжений

$$\sigma_i^{\max} \le 2.5 \cdot [\sigma] = 416 \,\mathrm{M\Pi a} \,. \tag{1}$$

Интенсивность деформаций на этом шаге нагружения, также является максимальной (3,91 %).

После снятия нагрузки со штампа происходит частичное, упругое выпрямление вмятины. Интенсивность напряжений снижается до значения близкого пределу текучести (253 МПа). Максимальные значения остаточных деформаций получаем в центре вмятины (3,85 %). При этом максимальные остаточные главные напряжения превышают предел текучести на 15 %.

Рисунок 6 – Напряжения о_i (МПа) при нагружении давлением [Р]

Рисунок 7 – Напряжения о_i (МПа) после снятия давления

Отметим, что в результате образования вмятины на внутренней поверхности в ее центральной части, были получены высокий уровень сжимающих остаточных напряжений, однако в точке II мы видим обратную картину, здесь мы имеем на внутренней поверхности растягивающие напряжения интенсивностью 184 МПа.

Как известно [1], высокий уровень растягивающих напряжений способствует коррозионному растрескиванию металла под воздействием агрессивных сред. В связи с этим более подробно рассмотрим, как изменится НДС в области вмятины при нагружении сосуда внутренним давлением.

Рисунок 8 - Перемещение стенок обечайки на основных этапах нагружения

На рис. 6, 7 показана интенсивность напряжений под нагрузкой допускаемым давлением [P] и после разгрузки. Под нагрузкой заметно повышение напряжений, по сравнению с предыдущим этапом. По видимому, это связано с тем, что напряжения от нагрузки складываются с остаточными напряжениями от вдавливания индентором. Однако эти суммарные напряжения не превышают предел текучести. После разгрузки наблюдается перераспределение всех напряжений. При этом сохраняются большие растягивающие напряжения (240 МПа) на внутренней, рабочей, поверхности обечайки. Уровень остаточных деформаций снизился на 1,16 % и составляет 2,69 %. Вмятина активно рихтуется и прогиб уменьшился вдвое до величины 13,6 мм.

Предельное давление P_e снимает остаточные растягивающие напряжения и переводит их в сжимающие напряжения. Максимум интенсивности напряжений при этом составляет 140 МПа, что ниже допускаемых общих напряжений. При этом достигается почти полная рихтовка вмятины (остаточный прогиб на этапе №6 составляет -1,8 мм).

Рассмотрим, как изменится НДС в области вмятины при нагружении обечайки перегрузочным давлением с шагом в один процент и последующей

разгрузкой. Поскольку картина распределение напряжений мало отличается от приведенных на рис. 6, 7, то они в данной работе не приводятся.

№ Этапа	Давление	Поверх- ность	σ _φ , MΠa		σ _z , MΠa		g		Uy, мм	
			Точ- ка І	Точ- ка II	Точ- ка І	Точ- ка II	σ _i ^{max} , ΜΠ	ϵ_{i}^{max} , %	Точ- ка І	Не- вмя- тая часть
1	0	наружная	-290	287	-320	210	281	3,91	-66	0
		внутренняя	280	-290	315	-170				
2	0	наружная	250	-36	270	60	253	3,85	-30	0
		внутренняя	-287	184	-275	-39				
3	[P]	наружная	288	-128	289	138	250	2,72	-7,3	1,3
		внутренняя	-190	284	-283	138				
4	0	наружная	-182	-197	-147	197	247	2,69	-13,6	0
		внутренняя	240	53	-118	-20				
5	Pe	наружная	240	160	235	114	253	2,14	-0,3	2,0
		внутренняя	163	285	-114	159				
6	0	наружная	-117	-91	-28	132	140	2,08	-1,8	0
		внутренняя	-108	8	-143	-10				
7	1,01	наружная	260	280	218	159	255	2,12	5,54	7,1
	Pe	внутренняя	240	263	-17	160				
8	0	наружная	-74	18	-13	45	78,9	2,03	3,5	5,3
		внутренняя	-43	-18	-80	5,7				
9	1,02 Pe	наружная	278	295	202	150	260	2,33	13,7	15,1
		внутренняя	280	295	50	150				
10	0	наружная	-44	11	-5	14	42	2,23	11,7	13,0
		внутренняя	-10	-2	-38	0,1				
11	1,03 Pe	наружная	291	305	193	150	266	2,73	22,3	23,4
		внутренняя	297	302	92	150				
12	0	наружная	-29	4,2	-2	6	27	2,61	20,6	21,1
		внутренняя	-0,3	-5,7	-19	-4				
13	1,04 Pe	наружная	301	311	187	155	272	3,23	31,17	31,7
		внутренняя	308	311	113	155				
14	0	наружная	-20	-2	-1	4	19,5	3,10	29,2	30,0
		внутренняя	3,1	-4	-10	-3				
15	1,05 Pe	наружная	310	316	184	153	278	3,81	40,23	41,0
		внутренняя	316	314	125	156				
16	0	наружная	-15	-3	-0,7	-2	14,3	3,67	38,1	39,0
		внутренняя	4	-3	-6	-2				

Результаты расчета обечайки с вмятиной

На этапе нагружения внутренним давлением, максимумы интенсивности напряжений повышаются пропорционально прикладываемой нагрузке. После снятия нагрузки уровень внутренних напряжений продолжает снижаться. Рихтовка вмятины продолжается, однако менее интенсивно, чем на предыдущих шагах. Максимумы интенсивности остаточные деформаций продолжают снижаются до нагружения однопроцентным перегрузочным давлением $P = 1,01P_e$. При этом также снимаются растягивающие напряжения. Перемещения оболочки находятся на приемлемом уровне. Дальнейшее повышение внутреннего давление приводит к увеличению остаточных деформаций и приводит к нежелательному деформированию всей оболочки.

Выводы. В области вмятины возникают значительные остаточные напряжения и деформации. На внутренней рабочей поверхности получен высокий уровень (порядка предела текучести) остаточных напряжений.

Эксплуатация сосуда с рабочим (допускаемым) давлением приводит к перераспределению остаточных напряжений, однако их уровень существенно не изменяется и высокие растягивающие напряжения остаются.

После обработки сосуда предельным давлением происходит существенное перераспределение нормальных напряжений на внутренней рабочей поверхности сосуда (напряжения становятся отрицательными, что снижает риск коррозионного растрескивания под напряжением). При этом происходит практически полная рихтовка вмятины.

По видимому, приемлема обработка однопроцентным перегрузочным давлением ($P = 1, 1 P_e$), в результате которой нормальные напряжения на рабочей поверхности сосуда, также остаются отрицательными, а остаточные деформации сосуда незначительными (Uy = 5,3 мм).

Дальнейшее повышение давления существенно не меняет остаточные напряжения, но приводит к нежелательным деформациям всей оболочки.

Список литературы: 1. Стеклов О.И. Прочность сварных конструкций в агрессивных средах. – М.: Машиностроение, 1976. 2. Сосуды. Аппараты. Трубопроводы. Гидрообработка, СОУ ОАО «УкрНИИхиммаш» – 004:2009 [Дата введения 10.08.2009]. – Х.: Стандарт предприятия, 2009. 3. Сосуды и аппараты. Нормы и методы расчета на прочность: ГОСТ 14249–89 [Дата введения 01.01.90]. – Х.: Издательство стандартов, 1989. 4. Басов К.А. Ansys: справочник пользователя. – М.: ДМК Пресс, 2005.

Поступила в редколлегию 26.09.2011